Acessibilidade / Reportar erro

What is known so far about bull sperm protamination: a review

Abstract

Sperm routinary fitness evaluation is not sufficient to predict bull reproductive capacity as they present differences in fertility up to 40%. Among the defects which compromise spermatozoa functionality, new approaches consider the study of sperm chromatin, which is the core structure containing paternal genetic information. Sperm chromatin needs to be compacted to maintain the integrity of DNA, which occurs by binding nucleoproteins with high affinity to DNA. In the last stages of sperm maturation, chromatin is hyper-compacted by basic proteins called protamines in a process named protamination. In this review, we summarized intrinsic and extrinsic factors that are suggested to influence protamination in bull spermatozoa, considering old and new evidence from human and murine spermatozoa. Also, the current approaches to evaluate bull protamination and its relationship with fertility were described. Nevertheless, the physiological mechanisms of protamination are still poorly understood.

Keywords:
protamine; spermatozoa; DNA fragmentation; spermatogenesis; bull fertility

Introduction

The use of assisted reproduction techniques (ARTs) in cattle production is expanding as it promotes genetic gains by breeding dams with sires of high genetic potential (Widayati, 2012Widayati D. Embryo transfer as an assisted reproductive technology in farm animals. World Acad Sci Eng Technol. 2012;6:10-21.). However, the outcome of ARTs is unpredictable as these techniques are highly susceptible to undetected alterations in female and male gametes (Seegers et al., 1994Seegers H, Fourichon C, Malher X, L’Hostis M. A framework for animal health management. Vet Res. 1994;25(2-3):165-73. PMid:8038779.; Inchaisri et al., 2010Inchaisri C, Jorritsma R, Vos PLAM, van der Weijden GC, Hogeveen H. Economic consequences of reproductive performance in dairy cattle. Theriogenology. 2010;74(5):835-46. http://dx.doi.org/10.1016/j.theriogenology.2010.04.008. PMid:20580069.
http://dx.doi.org/10.1016/j.theriogenolo...
; Daly et al., 2020Daly J, Smith H, McGrice HA, Kind KL, van Wettere WHEJ. Towards improving the outcomes of assisted reproductive technologies of cattle and sheep, with particular focus on recipient management. Animals. 2020;10(2):1-15. http://dx.doi.org/10.3390/ani10020293. PMid:32069818.
http://dx.doi.org/10.3390/ani10020293...
).

Spermatozoa is a complex cell that could have hidden alterations that can delay genetic improvement since AI centers commercialize straws from selected bulls for multiple inseminations. This arises a big concern inside these centers, as normozoospermic bulls show up to 25% of fertility differences when tested in vivo (Kidder et al., 1954Kidder HE, Black WG, Wiltbank JN, Ulberg LC, Casida LE. Fertilization Rates and Embryonic Death Rates in Cows Bred to Bulls of Different Levels of Fertility. J Dairy Sci. 1954;37(6):691-7. http://dx.doi.org/10.3168/jds.S0022-0302(54)91314-4.
http://dx.doi.org/10.3168/jds.S0022-0302...
; Larson and Miller, 2000Larson JL, Miller DJ. Can relative spermatozoal galactosyltransferase activity be predictive of dairy bull fertility? J Dairy Sci. 2000;83(11):2473-9. http://dx.doi.org/10.3168/jds.S0022-0302(00)75139-3. PMid:11104266.
http://dx.doi.org/10.3168/jds.S0022-0302...
; Alahmar, 2019Alahmar A. Role of oxidative stress in male infertility: an updated review. J Hum Reprod Sci. 2019;12(1):4-18. http://dx.doi.org/10.4103/jhrs.JHRS_150_18. PMid:31007461.
http://dx.doi.org/10.4103/jhrs.JHRS_150_...
).

As each ejaculate shows a heterogenous cell population, identifying and characterizing the defects become a key step to assess spermatozoa viability. There are defects named as compensable because it is possible to achieve minimum pregnancy rates by increasing cell concentration in inseminating doses (Saacke, 2008Saacke RG. Sperm morphology: its relevance to compensable and uncompensable traits in semen. Theriogenology. 2008;70(3):473-8. http://dx.doi.org/10.1016/j.theriogenology.2008.04.012.
http://dx.doi.org/10.1016/j.theriogenolo...
). Examples of these are morphological and structural alterations that impair spermatozoa's movement through the female reproductive tract and are also suspected of blocking capacitation and spermatozoa-egg recognition (Freundl et al., 1988Freundl G, Grimm HJ, Hofmann N. Selective filtration of abnormal spermatozoa by the cervical mucus*. Hum Reprod. 1988;3(3):277-80. http://dx.doi.org/10.1093/oxfordjournals.humrep.a136695. PMid:3372692.
http://dx.doi.org/10.1093/oxfordjournals...
; Saacke, 2008Saacke RG. Sperm morphology: its relevance to compensable and uncompensable traits in semen. Theriogenology. 2008;70(3):473-8. http://dx.doi.org/10.1016/j.theriogenology.2008.04.012.
http://dx.doi.org/10.1016/j.theriogenolo...
). In this same ejaculation are present other defects considered non-compensable because their negative impact can’t be compensated by increasing cell concentration (Kastelic, 2013Kastelic JP. Male involvement in fertility and factors affecting semen quality in bulls. Anim Front. 2013;3(4):20-5. http://dx.doi.org/10.2527/af.2013-0029.
http://dx.doi.org/10.2527/af.2013-0029...
). This classification considers defects in chromatin compaction and plasma membrane structures because they can impair fertilization and block early embryogenesis (DeJarnette, 2005DeJarnette JM. The effect of semen quality on reproductive efficiency. Vet Clin North Am Food Anim Pract. 2005;21(2):409-18. http://dx.doi.org/10.1016/j.cvfa.2005.02.011. PMid:15955437.
http://dx.doi.org/10.1016/j.cvfa.2005.02...
; Flowers, 2013Flowers WL. Triennial Reproduction Symposium: sperm characteristics that limit success of fertilization. J Anim Sci. 2013;91(7):3022-9. http://dx.doi.org/10.2527/jas.2012-5945. PMid:23307855.
http://dx.doi.org/10.2527/jas.2012-5945...
), and sperm chromatin alterations in bull spermatozoa, as it influences negatively the reproductive outcome causing decreased cleavage rates and delayed pronucleus formation (Shamsuddin and Larsson, 1993Shamsuddin M, Larsson B. In vitro development of bovine embryos after fertilization using semen from different donors. Reprod Domest Anim. 1993;28(2):77-84. http://dx.doi.org/10.1111/j.1439-0531.1993.tb01156.x.
http://dx.doi.org/10.1111/j.1439-0531.19...
; Eid et al., 1994Eid LN, Lorton SF, Parrish JJ. Paternal influence on S-phase in the first cell cycle of the bovine embryo. Biol Reprod. 1994;51(6):1232-7. http://dx.doi.org/10.1095/biolreprod51.6.1232. PMid:7888500.
http://dx.doi.org/10.1095/biolreprod51.6...
). It is essential to maintain the integrity of sperm chromatin as it contains paternal DNA and early signaling for embryo development, then DNA breaks or DNA fragmentation makes unfeasible fertilization and compromises fertility (Oleszczuk et al., 2013Oleszczuk K, Augustinsson L, Bayat N, Giwercman A, Bungum M. Prevalence of high DNA fragmentation index in male partners of unexplained infertile couples. Andrology. 2013;1(3):357-60. http://dx.doi.org/10.1111/j.2047-2927.2012.00041.x. PMid:23596042.
http://dx.doi.org/10.1111/j.2047-2927.20...
; Choi et al., 2017Choi HY, Kim SK, Kim SH, Choi YM, Jee BC. Impact of sperm DNA fragmentation on clinical in vitro fertilization outcomes. Clin Exp Reprod Med. 2017;44(4):224-31. http://dx.doi.org/10.5653/cerm.2017.44.4.224. PMid:29376020.
http://dx.doi.org/10.5653/cerm.2017.44.4...
). The causes of DNA susceptibility and failures in chromatin compaction are suggested to be a consequence of impaired nuclear remodeling due to failures in histone replacement by protamines in the final phase of spermatogenesis (Gosálvez Berenguer et al., 2008Gosálvez Berenguer J, Caballero Peregrín P, López-Fernández C, Fernández JL, Núñez Calonge R. Fragmentación del ADN espermático. Rev Int Androl. 2008;6(3):193-209. http://dx.doi.org/10.1016/S1698-031X(08)76145-4.
http://dx.doi.org/10.1016/S1698-031X(08)...
).

Among human and murine spermatozoa, the most studied models, failures in nuclear remodeling result in defective cells with increased susceptibility to sperm DNA fragmentation (Björndahl and Kvist, 2010Björndahl L, Kvist U. Human sperm chromatin stabilization: a proposed model including zinc bridges. Mol Hum Reprod. 2010;16(1):23-9. http://dx.doi.org/10.1093/molehr/gap099. PMid:19933313.
http://dx.doi.org/10.1093/molehr/gap099...
). Despite this, spermatozoa still have the fertilizing capacity, but if the severity of sperm DNA damage exceeds the oocyte’s repair capacity, blockage of early embryonic development may occur (Fatehi et al., 2006Fatehi AN, Bevers MM, Schoevers E, Roelen BAJ, Colenbrander B, Gadella BM. DNA damage in bovine sperm does not block fertilization and early embryonic development but induces apoptosis after the first cleavages. J Androl. 2006;27(2):176-88. http://dx.doi.org/10.2164/jandrol.04152. PMid:16304212.
http://dx.doi.org/10.2164/jandrol.04152...
).

The objective of this review was to describe the current approaches to bull protamination evaluation and its relationship with fertility.

Remodeling of sperm DNA

Preservation of male genetic information contained in chromatin is achieved by DNA binding to various nucleoproteins (histones, transition proteins, and protamines) throughout sperm maturation (Rathke et al., 2014Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. Biochim Biophys Acta. 2014;1839(3):155-68. http://dx.doi.org/10.1016/j.bbagrm.2013.08.004. PMid:24091090.
http://dx.doi.org/10.1016/j.bbagrm.2013....
). In the early stages of spermatogenesis, first sperm stem cells (SSC) located close to the seminiferous tubules will differentiate into early spermatogonia (2n), whose DNA is coiled into octamers of canonical histones (H2A, H2B, H3, and H4) resulting in units called nucleosomes (Talbert and Henikoff, 2010Talbert PB, Henikoff S. Histone variants ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol. 2010;11(4):264-75. http://dx.doi.org/10.1038/nrm2861. PMid:20197778.
http://dx.doi.org/10.1038/nrm2861...
). As spermatogenesis progresses (Figure 1), canonical histones will undergo post-transcriptional modifications (PTM) that will destabilize those nucleosomes, allowing relaxation of chromatin structure and promoting replacement with histone variants and testis-specific (Bao and Bedford, 2016Bao J, Bedford MT. Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction. 2016;151(5):R55-70. http://dx.doi.org/10.1530/REP-15-0562. PMid:26850883.
http://dx.doi.org/10.1530/REP-15-0562...
). After the meiotic phase, late spermatocytes will produce haploid round spermatids with transient-remodeled nucleus chromatin which suffered histone substitution for transition proteins 1 and 2 (TNPs) until elongated spermatid (n) stage (Meistrich et al., 2003Meistrich ML, Mohapatra B, Shirley CR, Zhao M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma. 2003;111(8):483-8. http://dx.doi.org/10.1007/s00412-002-0227-z. PMid:12743712.
http://dx.doi.org/10.1007/s00412-002-022...
).

Figure 1
Concept map of proposed sperm chromatin dynamics and content along with spermatogenesis phases in bovine spermatozoa. *Primary spermatocyte: This stage considers leptotene, zygotene, pachytene, and diplotene before the two consecutive meiotic phases. **Spermatid: This stage considers round and elongated spermatid preceding the protamine deposition.

As shown in Figure 1, elongated spermatids in late spermiogenesis will undergo morphological changes to compact the nuclear content and maintain the hydrodynamic and spermatozoa characteristic shape. To this end, TNP1 and TNP2 will also suffer post-transcriptional modifications as hyperacetylation that facilitates the replacement by basic and high-affinity proteins called protamines (PRMs) to the DNA (Balhorn, 2007Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol. 2007;8(9):227. http://dx.doi.org/10.1186/gb-2007-8-9-227. PMid:17903313.
http://dx.doi.org/10.1186/gb-2007-8-9-22...
). PRMs are low molecular weight nucleoproteins composed of arginine and oxidized cysteine, which are tightly bound to each other due to disulfide bridges on the cysteine residues. Also, their composition results in a highly positively charged protein with a high affinity for DNA (Balhorn et al., 2000Balhorn R, Brewer L, Corzett M. DNA condensation by protamine and arginine-rich peptides: analysis of toroid stability using single DNA molecules. Mol Reprod Dev. 2000;56(2, Suppl):230-4. http://dx.doi.org/10.1002/(SICI)1098-2795(200006)56:2+<230::AID-MRD3>3.0.CO;2-V. PMid:10824973.
http://dx.doi.org/10.1002/(SICI)1098-279...
).

The protamination process involves the species-specific participation of two protamine families: protamine 1 (PRM1) and protamine 2 (PRM2, PRM3, and PRM4). The PRM1 is usually synthesized as a mature protein. PRM1 is composed of 50 amino acids with 3 main domains: a central arginine-rich domain; a high affinity for DNA, flanked by serine and cysteine residues domain; and the last containing threonine segments and several phosphorylation sites (Steger and Balhorn, 2018Steger K, Balhorn R. Sperm nuclear protamines: a checkpoint to control sperm chromatin quality. Anat Histol Embryol. 2018;47(4):273-9. http://dx.doi.org/10.1111/ahe.12361. PMid:29797354.
http://dx.doi.org/10.1111/ahe.12361...
). Also, PRM1 is found in the sperm nucleus of almost all mammals and has a highly conserved structure between species. On the other hand, PRM2 usually is synthesized as a precursor and it is present in spermatozoa of a few species such as mice, equine, primates, and humans (Steger and Balhorn, 2018Steger K, Balhorn R. Sperm nuclear protamines: a checkpoint to control sperm chromatin quality. Anat Histol Embryol. 2018;47(4):273-9. http://dx.doi.org/10.1111/ahe.12361. PMid:29797354.
http://dx.doi.org/10.1111/ahe.12361...
). In bovines, spermatozoa protamination was attributed entirely to PRM1, until recent reports of PRM2 translation in both testicular and sperm tissue (Hamilton et al., 2019Hamilton TRS, Simões R, Mendes CM, Goissis MD, Nakajima E, Martins EAL, Visintin JA, Assumpção MEOA. Detection of protamine 2 in bovine spermatozoa and testicles. Andrology. 2019;7(3):373. http://dx.doi.org/10.1111/andr.12610. PMid:30920782.
http://dx.doi.org/10.1111/andr.12610...
).

Protamine substitution in mature bull spermatozoa would establish a strong and protected structure, believed to be a result of an evolutive mechanism due to high selection pressure. For this reason, it is important to measure protamination, as it would be a checkpoint to assure bull fertility. Immature spermatozoa inside the testis or in epididymal transit still show low protamine binding (CMA3 assay) which correlates with high rates of DNA susceptibility to fragmentation (Fortes et al., 2014Fortes MRS, Satake N, Corbet DH, Corbet NJ, Burns BM, Moore SS, Boe-Hansen GB. Sperm protamine deficiency correlates with sperm DNA damage in Bos indicus bulls. Andrology. 2014;2(3):370-8. http://dx.doi.org/10.1111/j.2047-2927.2014.00196.x. PMid:24634207.
http://dx.doi.org/10.1111/j.2047-2927.20...
).

Protamines have an important role in maintaining male fertility, as this hyper-compaction would preserve the integrity of sperm chromatin throughout the female tract until reaching the oocyte (Agarwal et al., 2003Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829-43. http://dx.doi.org/10.1016/S0015-0282(02)04948-8. PMid:12749418.
http://dx.doi.org/10.1016/S0015-0282(02)...
). At the same time, recently, human and bull protamines are being used as sperm biomarkers to assess fertility considering the differences in the amount of PRM1 and PRM2 in sperm chromatin (Fraga et al., 1996Fraga CG, Motchnik PA, Wyrobek AJ, Rempel DM, Ames BN. Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutat Res. 1996;351(2):199-203. http://dx.doi.org/10.1016/0027-5107(95)00251-0. PMid:8622715.
http://dx.doi.org/10.1016/0027-5107(95)0...
; Pardede et al., 2020Pardede BP, Agil M, Supriatna I. Protamine and other proteins in sperm and seminal plasma as molecular markers of bull fertility. Vet World. 2020;13(3):556-62. http://dx.doi.org/10.14202/vetworld.2020.556-562. PMid:32367964.
http://dx.doi.org/10.14202/vetworld.2020...
).

Chromatin content

Chromatin compaction is a late-spermatogenesis process with species-specific signaling, so the conformation and amount of each protamine in sperm chromatin will differ between species (Oliva, 2006Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12(4):417-35. http://dx.doi.org/10.1093/humupd/dml009. PMid:16581810.
http://dx.doi.org/10.1093/humupd/dml009...
). Mammal spermatozoa can show up to 40% of structural differences among protamine structures and unique PRM1:PRM2 ratios for each specie (Steger and Balhorn, 2018Steger K, Balhorn R. Sperm nuclear protamines: a checkpoint to control sperm chromatin quality. Anat Histol Embryol. 2018;47(4):273-9. http://dx.doi.org/10.1111/ahe.12361. PMid:29797354.
http://dx.doi.org/10.1111/ahe.12361...
). Protamines undergo structural modifications after translation, where cysteine residues are oxidized producing inter and intra-protamine disulfide bonds (Vilfan et al., 2004Vilfan ID, Conwell CC, Hud NV. Formation of native-like mammalian sperm cell chromatin with folded bull protamine. J Biol Chem. 2004;279(19):20088-95. http://dx.doi.org/10.1074/jbc.M312777200. PMid:14990583.
http://dx.doi.org/10.1074/jbc.M312777200...
). This variability related to the number of cysteine residues between species could result in a greater or lesser degree of chromatin compaction (Bennetts and Aitken, 2005Bennetts LE, Aitken RJ. A comparative study of oxidative DNA damage in mammalian spermatozoa. Mol Reprod Dev. 2005;71(1):77-87. http://dx.doi.org/10.1002/mrd.20285. PMid:15736137.
http://dx.doi.org/10.1002/mrd.20285...
; Villani et al., 2010Villani P, Eleuteri P, Grollino MG, Rescia M, Altavista P, Spanò M, Pacchierotti F, Cordelli E. Sperm DNA fragmentation induced by DNAse I and hydrogen peroxide: an in vitro comparative study among different mammalian species. Reproduction. 2010;140(3):445-52. http://dx.doi.org/10.1530/REP-10-0176. PMid:20584992.
http://dx.doi.org/10.1530/REP-10-0176...
).

In spermatozoa of some species like humans, the physiological replacement of protamines in spermatozoa is incomplete, generating a fraction of DNA (≅ 15%) still attached to nucleosomes (Hammoud et al., 2009Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473-8. http://dx.doi.org/10.1038/nature08162. PMid:19525931.
http://dx.doi.org/10.1038/nature08162...
; Erkek et al., 2013Erkek S, Hisano M, Liang CY, Gill M, Murr R, Dieker J, Schübeler D, van der Vlag J, Stadler MB, Peters AH. Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat Struct Mol Biol. 2013;20(7):868-75. http://dx.doi.org/10.1038/nsmb.2599. PMid:23770822.
http://dx.doi.org/10.1038/nsmb.2599...
). The mechanisms involved in histone retention are still poorly elucidated, but it is believed that some histones with post-transcriptional modifications (PTM) can evade replacement by the action of transcription factors such as BORIS (Brother of the Regulator of Imprinted Sites) and CTCF (CCCTC-binding factor) while generating a form of epigenetic inheritance (Pugacheva et al., 2015Pugacheva EM, Rivero-Hinojosa S, Espinoza CA, Méndez-Catalá CF, Kang S, Suzuki T, Kosaka-Suzuki N, Robinson S, Nagarajan V, Ye Z, Boukaba A, Rasko JE, Strunnikov AV, Loukinov D, Ren B, Lobanenkov VV. Comparative analyses of CTCF and BORIS occupancies uncover two distinct classes of CTCF binding genomic regions. Genome Biol. 2015;16(1):161. http://dx.doi.org/10.1186/s13059-015-0736-8. PMid:26268681.
http://dx.doi.org/10.1186/s13059-015-073...
). In addition to this, the presence of promoters and genes required for early embryonic activation has been reported to be further linked to nucleosomes with PTM-histones (H3K4me3, H3K4me2, and H3K27me3) in human and bovine spermatozoa (Samans et al., 2014Samans B, Yang Y, Krebs S, Sarode GV, Blum H, Reichenbach M, Wolf E, Steger K, Dansranjavin T, Schagdarsurengin U. Uniformity of nucleosome preservation pattern in mammalian sperm and Its connection to repetitive DNA elements. Dev Cell. 2014;30(1):23-35. http://dx.doi.org/10.1016/j.devcel.2014.05.023. PMid:24998597.
http://dx.doi.org/10.1016/j.devcel.2014....
; Jung et al., 2017Jung YH, Sauria MEG, Lyu X, Cheema MS, Ausio J, Taylor J, Corces VG. Chromatin states in mouse sperm correlate with embryonic and adult regulatory landscapes. Cell Rep. 2017;18(6):1366-82. http://dx.doi.org/10.1016/j.celrep.2017.01.034. PMid:28178516.
http://dx.doi.org/10.1016/j.celrep.2017....
). Another important histone-variant along spermatogenesis is the T2HB, which is suggested to be present in the whole spermatogenesis, as it would facilitate nucleoproteins substitutions and chromatin remodeling in mouse and bovine spermatozoa (Shinagawa et al., 2015Shinagawa T, Huynh LM, Takagi T, Tsukamoto D, Tomaru C, Kwak HG, Dohmae N, Noguchi J, Ishii S. Disruption of TH2a and TH2b genes causes defects in spermatogenesis. Development. 2015;142(7):1287-92. PMid:25742800.; Kutchy et al., 2017Kutchy NA, Velho A, Menezes ESB, Jacobsen M, Thibaudeau G, Wills RW, Moura A, Kaya A, Perkins A, Memili E. Testis specific histone 2B is associated with sperm chromatin dynamics and bull fertility: a pilot study. Reprod Biol Endocrinol. 2017;15(1):59. http://dx.doi.org/10.1186/s12958-017-0274-1. PMid:28764714.
http://dx.doi.org/10.1186/s12958-017-027...
).

Sperm chromatin content is considered a unique mosaic for each species and even for breeds as the proportion of nucleoproteins varies among individuals, thanks to the presence or absence of regulatory transcription factors (Oliva et al., 2009Oliva R, De Mateo S, Estanyol JM. Sperm cell proteomics. Proteomics. 2009;9(4):1004-17. http://dx.doi.org/10.1002/pmic.200800588. PMid:19212950.
http://dx.doi.org/10.1002/pmic.200800588...
). These particularities are even more important as chromatin composition could vary between individuals with different fertility scores. To acknowledge this, several protein-related studies were compiled, and it was observed quantitative differences between proteins related to acrosomal function, capacitation processes, seminal plasma, and protamine content among bulls used in artificial insemination programs with fertility problems (Harayama et al., 2017Harayama H, Minami K, Kishida K, Noda T. Protein biomarkers for male artificial insemination subfertility in bovine spermatozoa. Reprod Med Biol. 2017;16(2):89-98. http://dx.doi.org/10.1002/rmb2.12021. PMid:29259456.
http://dx.doi.org/10.1002/rmb2.12021...
). As these recent approaches describe the importance of sperm chromatin integrity in bulls, the next step would be identifying sperm chromatin molecules or integrity analyses to verify chromatin status or using them as biomarkers in bull spermatozoa. Currently, biomarkers in chromatin are used to identify changes in somatic cells of human tissues for diagnosing, preventing, and prognosticating, and even as a therapeutic approach for human diseases (Hlady and Robertson, 2016Hlady RA, Robertson KD. Use of chromatin changes as biomarkers. In: Binda O, Fernandez-Zapico ME, editors. Chromatin signaling and diseases. London: Elsevier; 2016. http://dx.doi.org/10.1016/B978-0-12-802389-1.00022-8.
http://dx.doi.org/10.1016/B978-0-12-8023...
).

PRM1:PRM2

It is important to acknowledge that mammals have more protamines (85%-99%) bound to DNA molecules when compared to humans, which have more DNA still attached to histones (Oliva, 2006Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12(4):417-35. http://dx.doi.org/10.1093/humupd/dml009. PMid:16581810.
http://dx.doi.org/10.1093/humupd/dml009...
). Among the proteins present in the nucleus, human sperm protamines are considered an important biomarker, as retrospective studies show the ideal ratio of PRM1: PRM2 close to 1 correlated to fertile individuals. Also, the same study reported alterations in the PRM1:PRM2 ratio and higher rates of DNA fragmentation in men with infertility/subfertility antecedents, which decreased the success of in vitro reproduction techniques, such as intracytoplasmic sperm injection (ICSI) and in vitro fertilization (IVF) (Balhorn et al., 1988Balhorn R, Reed S, Tanphaichitr N. Aberrant protamine 1/protamine 2 ratios in sperm of infertile human males. Experientia. 1988;44(1):52-5. http://dx.doi.org/10.1007/BF01960243. PMid:3350120.
http://dx.doi.org/10.1007/BF01960243...
; Evenson and Wixon, 2006Evenson DP, Wixon R. Clinical aspects of sperm DNA fragmentation detection and male infertility. Theriogenology. 2006;65(5):979-91. http://dx.doi.org/10.1016/j.theriogenology.2005.09.011. PMid:16242181.
http://dx.doi.org/10.1016/j.theriogenolo...
). Afterward, it was described that PRM1:PRM2 is correlated with other analyses (CMA3 and DFI) that evaluate DNA integrity, so it is suggested to be a strong predictor of men's fertility (Amor et al., 2018Amor H, Zeyad A, Bakry MS, Bosilah AM, Ali HB, Hammadeh ME. Protamine ratio as predictor of the fertility potential of sperm by couple undergoing ICSI. Int J Women’s Health Reprod Sci. 2018;6(4):400-9. http://dx.doi.org/10.15296/ijwhr.2018.67.
http://dx.doi.org/10.15296/ijwhr.2018.67...
).

Moreover, experiments using murine spermatozoa as a biological model also observed a complementary role of the binomial PRM1:PRM2 (Cho et al., 2003Cho C, Jung-Ha H, Willis WD, Goulding EH, Stein P, Xu Z, Schultz RM, Hecht NB, Eddy EM. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod. 2003;69(1):211-7. http://dx.doi.org/10.1095/biolreprod.102.015115. PMid:12620939.
http://dx.doi.org/10.1095/biolreprod.102...
). These studies with murine spermatozoa described that heterozygous animals for PRM1+/- and homozygous for PRM2-/- were infertile with high DNA fragmentation rates as presenting spermatozoa with decreased motility (Schneider et al., 2016Schneider S, Balbach M, Jan F Jikeli, Fietz D, Nettersheim D, Jostes S, Schmidt R, Kressin M, Bergmann M, Wachten D, Steger K, Schorle H. Re-visiting the Protamine-2 locus: Deletion, but not haploinsufficiency, renders male mice infertile. Sci Rep. 2016;6(1):36764. http://dx.doi.org/10.1038/srep36764. PMid:27833122.
http://dx.doi.org/10.1038/srep36764...
; Takeda et al., 2016Takeda N, Yoshinaga K, Furushima K, Takamune K, Li Z, Abe SI, Aizawa S, Yamamura K. Viable offspring obtained from Prm1-deficient sperm in mice. Sci Rep. 2016;6(1):27409. http://dx.doi.org/10.1038/srep27409. PMid:27250771.
http://dx.doi.org/10.1038/srep27409...
). Contrary to human sperm, PRM2 expression in murine is predominant and influences the ideal ratio (PRM1:PRM2), resulting in a value close to 0.6 (Arévalo et al., 2021Arévalo L, Tourmente M, Varea-Sánchez M, Ortiz-García D, Roldan ERS. Sexual selection towards a protamine expression ratio optimum in two rodent groups? Evolution. 2021;75(8):2124-31. http://dx.doi.org/10.1111/evo.14305. PMid:34224143.
http://dx.doi.org/10.1111/evo.14305...
).

In bulls, chromatin compaction was attributed only to PRM1, while PRM2 was believed to be nonfunctional (Maier et al., 1990Maier W, Nussbaum G, Domenjoud L, Klemm U, Engel W. The lack of protamine 2 (P2) in boar and bull spermatozoa is due to mutations within the P2 gene. Nucleic Acids Res. 1990;18(5):1249-54. http://dx.doi.org/10.1093/nar/18.5.1249. PMid:2320417.
http://dx.doi.org/10.1093/nar/18.5.1249...
). Recently, gene and protein expression of PRM2 has been described in bovine spermatozoa, even at low amounts (Hamilton et al., 2019Hamilton TRS, Simões R, Mendes CM, Goissis MD, Nakajima E, Martins EAL, Visintin JA, Assumpção MEOA. Detection of protamine 2 in bovine spermatozoa and testicles. Andrology. 2019;7(3):373. http://dx.doi.org/10.1111/andr.12610. PMid:30920782.
http://dx.doi.org/10.1111/andr.12610...
). Despite this, PRM2 function is hypothesized to let loose some DNA regions where some genes would need rapid transcription before and mainly after fertilization and would be the target of epigenetic markers along sperm chromatin compaction (Hamilton et al., 2019Hamilton TRS, Simões R, Mendes CM, Goissis MD, Nakajima E, Martins EAL, Visintin JA, Assumpção MEOA. Detection of protamine 2 in bovine spermatozoa and testicles. Andrology. 2019;7(3):373. http://dx.doi.org/10.1111/andr.12610. PMid:30920782.
http://dx.doi.org/10.1111/andr.12610...
). As PRM1 is the predominant nucleoprotein in bull spermatozoa, it would play a key role in fertility as decreased gene and protein expression is related to bulls with lower conception rates or lower reproductive success, as already described for human and murine species (Aoki et al., 2006Aoki VW, Emery BR, Liu L, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl. 2006;27(6):890-8. http://dx.doi.org/10.2164/jandrol.106.000703. PMid:16870950.
http://dx.doi.org/10.2164/jandrol.106.00...
; Bissonnette et al., 2009Bissonnette N, Lévesque-Sergerie JP, Thibault C, Boissonneault G. Spermatozoal transcriptome profiling for bull sperm motility: A potential tool to evaluate semen quality. Reproduction. 2009;138(1):65-80. http://dx.doi.org/10.1530/REP-08-0503. PMid:19423662.
http://dx.doi.org/10.1530/REP-08-0503...
; Feugang et al., 2010Feugang JM, Rodriguez-Osorio N, Kaya A, Wang H, Page G, Ostermeier GC, Topper EK, Memili E. Transcriptome analysis of bull spermatozoa: implications for male fertility. Reprod Biomed Online. 2010;21(3):312-24. http://dx.doi.org/10.1016/j.rbmo.2010.06.022. PMid:20638337.
http://dx.doi.org/10.1016/j.rbmo.2010.06...
). In addition to this, Dogan et al. (2015)Dogan S, Vargovic P, Oliveira R, Belser LE, Kaya A, Moura A, Sutovsky P, Parrish J, Topper E, Memili E. Sperm Protamine-Status Correlates to the Fertility of Breeding Bulls1. Biol Reprod. 2015;92(4):92. http://dx.doi.org/10.1095/biolreprod.114.124255. PMid:25673563.
http://dx.doi.org/10.1095/biolreprod.114...
reported a positive correlation between protamination levels with the fertility of bulls used in AI programs, as well as an aberrant distribution of PRM1 in spermatozoa with morphological defects.

Therefore, some studies mention the relationship of deleterious morphological defects with failures in protamination or higher rates of DNA fragmentation in bovine spermatozoa (Enciso et al., 2011Enciso M, Cisale H, Johnston SD, Sarasa J, Fernández JL, Gosálvez J. Major morphological sperm abnormalities in the bull are related to sperm DNA damage. Theriogenology. 2011;76(1):23-32. http://dx.doi.org/10.1016/j.theriogenology.2010.12.034. PMid:21529921.
http://dx.doi.org/10.1016/j.theriogenolo...
; Carreira et al., 2015Carreira JT, Trevizan JT, Kipper BH, Perri SHV, Carvalho IR, Rodrigues LH, Silva C, Koivisto MB. Impaired protamination and sperm DNA damage in a Nellore bull with high percentages of morphological sperm defects in comparison to normospermic bulls. Arq Bras Med Vet Zootec. 2015;67(2):417-23. http://dx.doi.org/10.1590/1678-7046.
http://dx.doi.org/10.1590/1678-7046...
). Also, it has been reported a protamination difference (using Chromomycin A3 assay) among bulls of different fertility, although being still low values (Castro et al., 2018Castro LS, Siqueira AFP, Hamilton TRS, Mendes CM, Visintin JA, Assumpção MEOA. Effect of bovine sperm chromatin integrity evaluated using three different methods on in vitro fertility. Theriogenology. 2018;107:142-8. http://dx.doi.org/10.1016/j.theriogenology.2017.11.006. PMid:29154161.
http://dx.doi.org/10.1016/j.theriogenolo...
). Despite the complementary role of PRM1 and PRM2 in bull spermatozoa are still unclear, the lack of protamination which is evaluated by the CMA3 test is an important component in current models of fertility prediction (Llavanera et al., 2021Llavanera M, Ribas-Maynou J, Delgado-Bermúdez A, Recuero S, Muiño R, Hidalgo CO, Tamargo C, Bonet S, Mateo-Otero Y, Yeste M. Sperm chromatin condensation as an in vivo fertility biomarker in bulls: a flow cytometry approach. J Anim Sci Biotechnol. 2021;12(1):115. http://dx.doi.org/10.1186/s40104-021-00634-7. PMid:34749810.
http://dx.doi.org/10.1186/s40104-021-006...
).

Inefficient protamination

Spermatozoa protamination in mammals occurs at the last epididymal passage and is part of the last structural modifications of the spermatozoa to acquire the hydrodynamic characteristics that allow it to fertilize the oocyte (Dadoune, 2003Dadoune J. Expression of mammalian spermatozoal nucleoproteins. Microsc Res Tech. 2003;61(1):56-75. http://dx.doi.org/10.1002/jemt.10317. PMid:12672123.
http://dx.doi.org/10.1002/jemt.10317...
). However, the regulatory mechanisms involved in nucleoprotein substitution are poorly elucidated. Despite the lack of knowledge, it is known that there are intrinsic and extrinsic factors involving spermatogenesis that can alter sperm compaction and protamination (summarized in Table 1).

Table 1
Summary of references about impaired protamination.

Intrinsic factors

Throughout spermatogenesis, canonical histones undergo post-transcriptional modifications (PTM) within the nuclear structure (Lewis et al., 2003Lewis JD, Abbott DW, Ausió J. A haploid affair: core histone transitions during spermatogenesis. Biochem Cell Biol. 2003;81(3):131-40. http://dx.doi.org/10.1139/o03-045. PMid:12897846.
http://dx.doi.org/10.1139/o03-045...
; Rathke et al., 2014Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. Biochim Biophys Acta. 2014;1839(3):155-68. http://dx.doi.org/10.1016/j.bbagrm.2013.08.004. PMid:24091090.
http://dx.doi.org/10.1016/j.bbagrm.2013....
). These PTM along with testis-specific histones regulating genes are required for spermatogenesis and chromatin remodeling. The most studied is H3T, which is encoded by two genes: H3f3a and H3f3b. Further studies produced a knock-out murine model for the H3f3b gene. The authors observed a total loss of fertility and a decreased expression of spermatogenesis-related genes, also exhibiting defective chromatin remodeling and protamination (Yuen et al., 2014Yuen BTK, Bush KM, Barrilleaux BL, Cotterman R, Knoepfler PS. Histone H3.3 regulates dynamic chromatin states during spermatogenesis. Development. 2014;141(18):3483-94. http://dx.doi.org/10.1242/dev.106450. PMid:25142466.
http://dx.doi.org/10.1242/dev.106450...
). The specific histone TH2 B's experimental knockout was related to histone replacement alterations by protamines in human and murine spermatozoa (Ausio et al., 2016Ausio J, Zhang Y, Ishibashi T. Histone variants and posttranslational modifications in spermatogenesis and infertility. In: García-Giménez JL, editor. Epigenetic biomarkers and diagnostics. London: Elsevier; 2016. http://dx.doi.org/10.1016/B978-0-12-801899-6.00024-3.
http://dx.doi.org/10.1016/B978-0-12-8018...
).

Protamine genes could also be targeted by epigenetic changes, sometimes resulting in an inefficient translation. High variability in the 5' VLR (Variable Length Repeat) region of the human PRM2 gene could lead to dysregulated protamination (Hammoud et al., 2007Hammoud S, Emery BR, Aoki VW, Carrell DT. Identification of genetic variation in the 5′ and 3′ non-coding regions of the protamine genes in patients with protamine deregulation. Arch Androl. 2007;53(5):267-74. http://dx.doi.org/10.1080/01485010701569890. PMid:18309899.
http://dx.doi.org/10.1080/01485010701569...
). The presence of SNPs (Single Nucleotide Polymorphisms) in the UTR (untranslated regions) of PRM1 or PRM2 could interfere with the splicing transcription factor, resulting in defective protamination, as related in humans (Ravel et al., 2007Ravel C, Chantot-Bastaraud S, El Houate B, Berthaut I, Verstraete L, De Larouziere V, Lourenço D, Dumaine A, Antoine JM, Mandelbaum J, Siffroi JP, McElreavey K. Mutations in the protamine 1 gene associated with male infertility. Mol Hum Reprod. 2007;13(7):461-4. http://dx.doi.org/10.1093/molehr/gam031. PMid:17494104.
http://dx.doi.org/10.1093/molehr/gam031...
)

Inside the testis parenchyma, there is an endocrine regulation of spermatogenesis that could reflect on sperm DNA compaction. The interaction between follicle-stimulating hormone (FSH) and testosterone plays a regulatory role in sperm chromatin, as FSH knock-out experiments reported changes in sperm chromatin and increased DNA fragmentation in murine spermatozoa (Xing et al., 2003Xing W, Krishnamurthy H, Sairam MR. Role of folltropin receptor signaling in nuclear protein transitions and chromatin condensation during spermatogenesis. Biochem Biophys Res Commun. 2003;312(3):697-701. http://dx.doi.org/10.1016/j.bbrc.2003.10.177. PMid:14680821.
http://dx.doi.org/10.1016/j.bbrc.2003.10...
). Also, FSH regulates the cyclic-AMP responsive modulator element (CREM) pathway, which is responsible for regulating the transcriptional activity of protamines and other genes required for proper spermatogenesis. The alterations in the CREM gene have been related to inadequate protamination of murine spermatozoa (Blendy et al., 1996Blendy JA, Kaestner KH, Weinbauer GF, Nieschlag E, Schütz G. Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature. 1996;380(6570):162-5. http://dx.doi.org/10.1038/380162a0. PMid:8600391.
http://dx.doi.org/10.1038/380162a0...
). Other regulators of protamination have also been described such as the PRM-1 RNA-binding protein (Prbp) and MSY2, both found at specific stages in murine testicular tissues (Lee et al., 1996Lee K, Fajardo MA, Braun RE. A testis cytoplasmic RNA-binding protein that has the properties of a translational repressor. Mol Cell Biol. 1996;16(6):3023-34. http://dx.doi.org/10.1128/MCB.16.6.3023. PMid:8649414.
http://dx.doi.org/10.1128/MCB.16.6.3023...
; Yu et al., 2002Yu J, Hecht NB, Schultz RM. RNA-binding properties and translation repression in vitro by germ cell-specific MSY2 protein. Biol Reprod. 2002;67(4):1093-8. http://dx.doi.org/10.1095/biolreprod67.4.1093. PMid:12297523.
http://dx.doi.org/10.1095/biolreprod67.4...
). The regulation of protamination is important because, if altered, it would result in early compaction, transcriptional sequestration, and consequent failure of sperm development (Lee et al., 1995Lee K, Haugen HS, Clegg CH, Braun RE. Premature translation of protamine 1 mRNA causes precocious nuclear condensation and arrests spermatid differentiation in mice. Proc Natl Acad Sci USA. 1995;92(26):12451-5. http://dx.doi.org/10.1073/pnas.92.26.12451. PMid:8618919.
http://dx.doi.org/10.1073/pnas.92.26.124...
; Kleene, 2003Kleene KC. Patterns, mechanisms, and functions of translation regulation in mammalian spermatogenic cells. Cytogenet Genome Res. 2003;103(3-4):217-24. http://dx.doi.org/10.1159/000076807. PMid:15051942.
http://dx.doi.org/10.1159/000076807...
).

Extrinsic factors

Oxidative and heat stress

A controlled environment is important as some external conditions could reflect negatively on the spermatozoa. Exposure to noxious substances or stressful conditions like heat stress could increase sperm metabolism and consequently, the production of reactive oxygen species (ROS), as suggested in Figure 2. Under harmful conditions compensatory mechanisms are triggered, such as the synthesis of heat shock proteins, oxidation of I, II, III, and IV mitochondria complexes, and changes in the cell basal metabolism, looking for homeostasis (England et al., 2004England K, O’Driscoll C, Cotter TG. Carbonylation of glycolytic proteins is a key response to drug-induced oxidative stress and apoptosis. Cell Death Differ. 2004;11(3):252-60. http://dx.doi.org/10.1038/sj.cdd.4401338. PMid:14631408.
http://dx.doi.org/10.1038/sj.cdd.4401338...
; Belhadj Slimen et al., 2016Belhadj Slimen I, Najar T, Ghram A, Abdrrabba M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J Anim Physiol Anim Nutr (Berl). 2016;100(3):401-12. http://dx.doi.org/10.1111/jpn.12379. PMid:26250521.
http://dx.doi.org/10.1111/jpn.12379...
).

Figure 2
Extrinsic and intrinsic factors involved in bovine spermatozoa protamination and its effects.

Nevertheless, heat stress can be present in different stages of spermatogenesis, being more deleterious in early spermatogenesis (spermatocyte and spermatid stages) irrupting transcription and transduction of various genes, yet not defined (Hikim et al., 2003Hikim APS, Lue Y, Yamamoto CM, Vera Y, Rodriguez S, Yen PH, Soeng K, Wang C, Swerdloff RS. Key apoptotic pathways for heat-induced programmed germ cell death in the testis. Endocrinology. 2003;144(7):3167-75. http://dx.doi.org/10.1210/en.2003-0175. PMid:12810573.
http://dx.doi.org/10.1210/en.2003-0175...
; Zhu et al., 2004Zhu B, Walker SK, Oakey H, Setchell BP, Maddocks S. Effect of paternal heat stress on the development in vitro of preimplantation embryos in the mouse. Andrologia. 2004;36(6):384-94. http://dx.doi.org/10.1111/j.1439-0272.2004.00635.x. PMid:15541055.
http://dx.doi.org/10.1111/j.1439-0272.20...
; Pérez-Crespo et al., 2008Pérez-Crespo M, Pintado B, Gutiérrez-Adán A. Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Mol Reprod Dev. 2008;75(1):40-7. http://dx.doi.org/10.1002/mrd.20759. PMid:17474098.
http://dx.doi.org/10.1002/mrd.20759...
). Physiologically, altered spermatocytes would go under cell death after apoptotic signalization; nevertheless, as gene expression is compromised, also interferes with the identification of apoptotic-signalized, gene expression and promotes an increase of DNA breaks (Absalan et al., 2012Absalan F, Movahedin M, Mowla SJ. Evaluation of apoptotic genes expression and its protein after treatment of cryptorchid mice. Iran Biomed J. 2012;16(2):77-83. PMid:22801280.; Kim et al., 2013Kim B, Park K, Rhee K. Heat stress response of male germ cells. Cell Mol Life Sci. 2013;70(15):2623-36. http://dx.doi.org/10.1007/s00018-012-1165-4. PMid:23007846.
http://dx.doi.org/10.1007/s00018-012-116...
).

Therefore, some heat-injured spermatozoa continue along spermatogenesis with several alterations, resulting in a dysfunctional gamete with morphological alterations, mitochondrial misfunction, and a looser chromatin (Paul et al., 2008Paul C, Murray AA, Spears N, Saunders PTK. A single, mild, transient scrotal heat stress causes DNA damage, subfertility and impairs formation of blastocysts in mice. Reproduction. 2008;136(1):73-84. http://dx.doi.org/10.1530/REP-08-0036. PMid:18390691.
http://dx.doi.org/10.1530/REP-08-0036...
; Rahman et al., 2011Rahman MB, Vandaele L, Rijsselaere T, Maes D, Hoogewijs M, Frijters A, Noordman J, Granados A, Dernelle E, Shamsuddin M, Parrish JJ, Van Soom A. Scrotal insulation and its relationship to abnormal morphology, chromatin protamination and nuclear shape of spermatozoa in Holstein-Friesian and Belgian Blue bulls. Theriogenology. 2011;76(7):1246-57. http://dx.doi.org/10.1016/j.theriogenology.2011.05.031. PMid:21777969.
http://dx.doi.org/10.1016/j.theriogenolo...
; Kim et al., 2013Kim B, Park K, Rhee K. Heat stress response of male germ cells. Cell Mol Life Sci. 2013;70(15):2623-36. http://dx.doi.org/10.1007/s00018-012-1165-4. PMid:23007846.
http://dx.doi.org/10.1007/s00018-012-116...
). Those alterations would also induce DNA breaks, especially in determinant regions where protamine-histone substitution occurs. Experimentally, a direct relationship is reported between induced testicular insulation and higher rates of DNA fragmentation, chromatin alterations, and impaired protamination (Rahman et al., 2011Rahman MB, Vandaele L, Rijsselaere T, Maes D, Hoogewijs M, Frijters A, Noordman J, Granados A, Dernelle E, Shamsuddin M, Parrish JJ, Van Soom A. Scrotal insulation and its relationship to abnormal morphology, chromatin protamination and nuclear shape of spermatozoa in Holstein-Friesian and Belgian Blue bulls. Theriogenology. 2011;76(7):1246-57. http://dx.doi.org/10.1016/j.theriogenology.2011.05.031. PMid:21777969.
http://dx.doi.org/10.1016/j.theriogenolo...
; Hamilton et al., 2018Hamilton TRDS, Siqueira AFP, Castro LS, Mendes CM, Delgado JDC, Assis PM, Mesquita LP, Maiorka PC, Nichi M, Goissis MD, Visintin JA, Assumpção MEODA. Effect of heat stress on sperm DNA: protamine assessment in ram spermatozoa and testicle. Oxid Med Cell Longev. 2018;2018:5413056. http://dx.doi.org/10.1155/2018/5413056. PMid:29765499.
http://dx.doi.org/10.1155/2018/5413056...
; Garcia-Oliveros et al., 2020Garcia-Oliveros LN, Arruda RP, Batissaco L, Gonzaga VHG, Nogueira VJM, Florez-Rodriguez SA, Almeida FS, Alves MBR, Pinto SCC, Nichi M, Losano JDA, Kawai GKV, Celeghini ECC. Heat stress effects on bovine sperm cells : a chronological approach to early findings. Int J Biometeorol. 2020;64(8):1367-78. http://dx.doi.org/10.1007/s00484-020-01917-w. PMid:32388687.
http://dx.doi.org/10.1007/s00484-020-019...
). Moreover, ART techniques such as cryopreservation are also related to a reduction of antioxidative enzymes and an increase of ROS because of osmotic and oxidative stress (Bollwein and Bittner, 2018Bollwein H, Bittner L. Impacts of oxidative stress on bovine sperm function and subsequent in vitro embryo development. Anim Reprod. 2018;15(Suppl 1):703-10. http://dx.doi.org/10.21451/1984-3143-AR2018-0041. PMid:36249836.
http://dx.doi.org/10.21451/1984-3143-AR2...
). As a result, cryopreserved semen shows sperm populations with different levels of oxidative stress (measured by TBARs) which have a positive correlation with DNA fragmentation and reduced embryo quality (Simões et al., 2013Simões R, Feitosa WB, Siqueira AFP, Nichi M, Paula-Lopes FF, Marques MG, Peres MA, Barnabe VH, Visintin JA, Assumpção ME. Influence of bovine sperm DNA fragmentation and oxidative stress on early embryo in vitro development outcome. Reproduction. 2013;146(5):433-41. http://dx.doi.org/10.1530/REP-13-0123. PMid:23940385.
http://dx.doi.org/10.1530/REP-13-0123...
).

To compensate for the excessive production of ROS, supplementation with vitamins (known for their antioxidant function) is used as a therapeutic alternative (Greco et al., 2005Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik JAN. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl. 2005;26(3):349-53. http://dx.doi.org/10.2164/jandrol.04146. PMid:15867002.
http://dx.doi.org/10.2164/jandrol.04146...
). Moreover, recent studies have related the effect of some vitamins (Vitamin C and E) over regulatory mechanisms that have not been elucidated yet on spermatogenesis and protamine biosynthesis (Hamidian et al., 2020Hamidian S, Talebi AR, Fesahat F, Bayat M, Mirjalili AM, Ashrafzadeh HR, Rajabi M, Montazeri F, Babaei S. The effect of vitamin C on the gene expression profile of sperm protamines in the male partners of couples with recurrent pregnancy loss: a randomized clinical trial. Clin Exp Reprod Med. 2020;47(1):68-76. http://dx.doi.org/10.5653/cerm.2019.03188. PMid:32146776.
http://dx.doi.org/10.5653/cerm.2019.0318...
; Gao et al., 2021Gao Y, Jian L, Lu W, Xue Y, Machaty Z, Luo H. Vitamin E can promote spermatogenesis by regulating the expression of proteins associated with the plasma membranes and protamine biosynthesis. Gene. 2021;773:145364. http://dx.doi.org/10.1016/j.gene.2020.145364. PMid:33359122.
http://dx.doi.org/10.1016/j.gene.2020.14...
). Vitamin C and E supplementation would be able to improve sperm chromatin status, increasing protamine expression and decreasing the percentage of sperm with fragmented DNA (Greco et al., 2005Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik JAN. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl. 2005;26(3):349-53. http://dx.doi.org/10.2164/jandrol.04146. PMid:15867002.
http://dx.doi.org/10.2164/jandrol.04146...
; Saito et al., 2020Saito H, Hara K, Kitajima S, Tanemura K. Effect of vitamin E deficiency on spermatogenesis in mice and its similarity to aging. Reprod Toxicol. 2020;98:225-32. http://dx.doi.org/10.1016/j.reprotox.2020.10.003. PMid:33045311.
http://dx.doi.org/10.1016/j.reprotox.202...
).

In summary, in the sperm chromatin is happening some sequenced events: heat stress negatively modifies gene and protein expression which arises ROS production resulting in oxidative damage (Garcia-Oliveros et al., 2020Garcia-Oliveros LN, Arruda RP, Batissaco L, Gonzaga VHG, Nogueira VJM, Florez-Rodriguez SA, Almeida FS, Alves MBR, Pinto SCC, Nichi M, Losano JDA, Kawai GKV, Celeghini ECC. Heat stress effects on bovine sperm cells : a chronological approach to early findings. Int J Biometeorol. 2020;64(8):1367-78. http://dx.doi.org/10.1007/s00484-020-01917-w. PMid:32388687.
http://dx.doi.org/10.1007/s00484-020-019...
). Nevertheless, those stimuli are suggested to cause marks along the sperm epigenome, reflected in increased DNA methylation, altered nucleoprotein substitution, male pronucleus delay, and final impairment in embryo development (Rahman et al., 2014Rahman MB, Kamal MM, Rijsselaere T, Vandaele L, Shamsuddin M, Van Soom A. Altered chromatin condensation of heat-stressed spermatozoa perturbs the dynamics of DNA methylation reprogramming in the paternal genome after in vitro fertilisation in cattle. Reprod Fertil Dev. 2014;26(8):1107-16. http://dx.doi.org/10.1071/RD13218. PMid:24041366.
http://dx.doi.org/10.1071/RD13218...
; Kiefer et al., 2021Kiefer H, Sellem E, Bonnet-Garnier A, Pannetier M, Costes V, Schibler L, Jammes H. The epigenome of male germ cells and the programming of phenotypes in cattle. Anim Front. 2021;11(6):28-38. http://dx.doi.org/10.1093/af/vfab062. PMid:34934527.
http://dx.doi.org/10.1093/af/vfab062...
). The resulting epigenetic profile varies among individuals, because of the degree of susceptibility to external or noxious stimuli.

Protamination check-up

Protamination status is not checked in routine semen evaluation, but experimental approaches consider direct or indirect evaluation. Direct evaluation has been validated already in humans and murine through absolute quantification of protamines by qPCR-RT, as the relative expression is not appropriate due to the reduced transcription activity in mature spermatozoa (Ni et al., 2016Ni K, Spiess AN, Schuppe HC, Steger K. The impact of sperm protamine deficiency and sperm DNA damage on human male fertility: a systematic review and meta-analysis. Andrology. 2016;4(5):789-99. http://dx.doi.org/10.1111/andr.12216. PMid:27231200.
http://dx.doi.org/10.1111/andr.12216...
). It is a useful biomarker as altered ratios are related to infertility (Aoki et al., 2005Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JBM, Carrell DT. DNA integrity is compromised in protamine-deficient human sperm. J Androl. 2005;26(6):741-8. http://dx.doi.org/10.2164/jandrol.05063. PMid:16291969.
http://dx.doi.org/10.2164/jandrol.05063...
, 2006Aoki VW, Emery BR, Liu L, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl. 2006;27(6):890-8. http://dx.doi.org/10.2164/jandrol.106.000703. PMid:16870950.
http://dx.doi.org/10.2164/jandrol.106.00...
; Amor et al., 2018Amor H, Zeyad A, Bakry MS, Bosilah AM, Ali HB, Hammadeh ME. Protamine ratio as predictor of the fertility potential of sperm by couple undergoing ICSI. Int J Women’s Health Reprod Sci. 2018;6(4):400-9. http://dx.doi.org/10.15296/ijwhr.2018.67.
http://dx.doi.org/10.15296/ijwhr.2018.67...
). Nevertheless, the relationship between protamination and fertility in bulls is a new topic, being at first described by relative values and recently through absolute quantifications (Hamilton et al., 2019Hamilton TRS, Simões R, Mendes CM, Goissis MD, Nakajima E, Martins EAL, Visintin JA, Assumpção MEOA. Detection of protamine 2 in bovine spermatozoa and testicles. Andrology. 2019;7(3):373. http://dx.doi.org/10.1111/andr.12610. PMid:30920782.
http://dx.doi.org/10.1111/andr.12610...
). As protamines are basic proteins, they also can be measured by a modified western blot because protamines are negative-charged proteins, being been already validated for bulls (Hamilton et al., 2021Hamilton TRS, Simões R, Assumpção MEODA. An improved acetic acid-urea polyacrylamide electrophoresis method to evaluate bovine sperm protamines. Reprod Domest Anim. 2021;56(7):1050-6. http://dx.doi.org/10.1111/rda.13941. PMid:33890330.
http://dx.doi.org/10.1111/rda.13941...
).

On the other hand, protamination status can be verified indirectly through chromatin integrity tests, such as toluidine blue, acridine orange, sperm chromatin structure assay, chromomycin A3 test, sperm chromatin dispersion test, COMET assay, and TUNEL assay (Souza et al., 2018Souza ET, Silva CV, Travençolo BAN, Alves BG, Beletti ME. Sperm chromatin alterations in fertile and subfertile bulls. Reprod Biol. 2018;18(2):177-81. http://dx.doi.org/10.1016/j.repbio.2018.04.001. PMid:29705068.
http://dx.doi.org/10.1016/j.repbio.2018....
). Among those tests, chromomycin A3 and acridine orange users extended and validated for human and murine research; also, these dyes give important information about chromatin status (protamine deficiencies and sperm susceptibility to fragmentation) as they help to estimate male fertility (Ni et al., 2016Ni K, Spiess AN, Schuppe HC, Steger K. The impact of sperm protamine deficiency and sperm DNA damage on human male fertility: a systematic review and meta-analysis. Andrology. 2016;4(5):789-99. http://dx.doi.org/10.1111/andr.12216. PMid:27231200.
http://dx.doi.org/10.1111/andr.12216...
). Therefore, predicting bull fertility is still difficult due to adaptative traits among breeds, male factors, and the poor understanding of sperm trait interactions. Despite this, chromomycin A3 is described as a useful test to measure chromatin packaging and is correlated to bull fertility (Llavanera et al., 2021Llavanera M, Ribas-Maynou J, Delgado-Bermúdez A, Recuero S, Muiño R, Hidalgo CO, Tamargo C, Bonet S, Mateo-Otero Y, Yeste M. Sperm chromatin condensation as an in vivo fertility biomarker in bulls: a flow cytometry approach. J Anim Sci Biotechnol. 2021;12(1):115. http://dx.doi.org/10.1186/s40104-021-00634-7. PMid:34749810.
http://dx.doi.org/10.1186/s40104-021-006...
).

Conclusions

Research, based on human and murine spermatozoa, describes the importance of the composition and integrity of sperm chromatin as it may not interfere with fertilization but with embryo development. Nevertheless, the dynamics in bull sperm chromatin are still poorly understood. What is clear, is that chromatin maturation depends on a preserved protamination (mainly to PRM1). Therefore, this review described the mechanisms that may impair protamination and consequently chromatin maturation. So far, it is acknowledged that external stimulus (ie: heat stress) and dysregulation of intrinsic factors may alter spermatogenesis, and gene expression and finally impair protamination. Also, the current methods (direct and indirect) of protamine evaluation are important but it is suggested that some functional studies are needed to achieve a better understanding of protamine dynamics in bulls.

  • Financial support: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.
  • How to cite: Nagaki CAP, Hamilton TRS, Assumpção MEOA. What is known so far about bull sperm protamination: a review. Anim Reprod. 2022;19(4):e20210109. https://doi.org/10.1590/1984-3143-AR2021-0109

References

  • Absalan F, Movahedin M, Mowla SJ. Evaluation of apoptotic genes expression and its protein after treatment of cryptorchid mice. Iran Biomed J. 2012;16(2):77-83. PMid:22801280.
  • Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829-43. http://dx.doi.org/10.1016/S0015-0282(02)04948-8 PMid:12749418.
    » http://dx.doi.org/10.1016/S0015-0282(02)04948-8
  • Alahmar A. Role of oxidative stress in male infertility: an updated review. J Hum Reprod Sci. 2019;12(1):4-18. http://dx.doi.org/10.4103/jhrs.JHRS_150_18 PMid:31007461.
    » http://dx.doi.org/10.4103/jhrs.JHRS_150_18
  • Amor H, Zeyad A, Bakry MS, Bosilah AM, Ali HB, Hammadeh ME. Protamine ratio as predictor of the fertility potential of sperm by couple undergoing ICSI. Int J Women’s Health Reprod Sci. 2018;6(4):400-9. http://dx.doi.org/10.15296/ijwhr.2018.67
    » http://dx.doi.org/10.15296/ijwhr.2018.67
  • Aoki VW, Emery BR, Liu L, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl. 2006;27(6):890-8. http://dx.doi.org/10.2164/jandrol.106.000703 PMid:16870950.
    » http://dx.doi.org/10.2164/jandrol.106.000703
  • Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JBM, Carrell DT. DNA integrity is compromised in protamine-deficient human sperm. J Androl. 2005;26(6):741-8. http://dx.doi.org/10.2164/jandrol.05063 PMid:16291969.
    » http://dx.doi.org/10.2164/jandrol.05063
  • Arévalo L, Tourmente M, Varea-Sánchez M, Ortiz-García D, Roldan ERS. Sexual selection towards a protamine expression ratio optimum in two rodent groups? Evolution. 2021;75(8):2124-31. http://dx.doi.org/10.1111/evo.14305 PMid:34224143.
    » http://dx.doi.org/10.1111/evo.14305
  • Ausio J, Zhang Y, Ishibashi T. Histone variants and posttranslational modifications in spermatogenesis and infertility. In: García-Giménez JL, editor. Epigenetic biomarkers and diagnostics. London: Elsevier; 2016. http://dx.doi.org/10.1016/B978-0-12-801899-6.00024-3
    » http://dx.doi.org/10.1016/B978-0-12-801899-6.00024-3
  • Balhorn R, Brewer L, Corzett M. DNA condensation by protamine and arginine-rich peptides: analysis of toroid stability using single DNA molecules. Mol Reprod Dev. 2000;56(2, Suppl):230-4. http://dx.doi.org/10.1002/(SICI)1098-2795(200006)56:2+<230::AID-MRD3>3.0.CO;2-V PMid:10824973.
    » http://dx.doi.org/10.1002/(SICI)1098-2795(200006)56:2+<230::AID-MRD3>3.0.CO;2-V
  • Balhorn R, Reed S, Tanphaichitr N. Aberrant protamine 1/protamine 2 ratios in sperm of infertile human males. Experientia. 1988;44(1):52-5. http://dx.doi.org/10.1007/BF01960243 PMid:3350120.
    » http://dx.doi.org/10.1007/BF01960243
  • Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol. 2007;8(9):227. http://dx.doi.org/10.1186/gb-2007-8-9-227 PMid:17903313.
    » http://dx.doi.org/10.1186/gb-2007-8-9-227
  • Bao J, Bedford MT. Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction. 2016;151(5):R55-70. http://dx.doi.org/10.1530/REP-15-0562 PMid:26850883.
    » http://dx.doi.org/10.1530/REP-15-0562
  • Belhadj Slimen I, Najar T, Ghram A, Abdrrabba M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J Anim Physiol Anim Nutr (Berl). 2016;100(3):401-12. http://dx.doi.org/10.1111/jpn.12379 PMid:26250521.
    » http://dx.doi.org/10.1111/jpn.12379
  • Bennetts LE, Aitken RJ. A comparative study of oxidative DNA damage in mammalian spermatozoa. Mol Reprod Dev. 2005;71(1):77-87. http://dx.doi.org/10.1002/mrd.20285 PMid:15736137.
    » http://dx.doi.org/10.1002/mrd.20285
  • Bissonnette N, Lévesque-Sergerie JP, Thibault C, Boissonneault G. Spermatozoal transcriptome profiling for bull sperm motility: A potential tool to evaluate semen quality. Reproduction. 2009;138(1):65-80. http://dx.doi.org/10.1530/REP-08-0503 PMid:19423662.
    » http://dx.doi.org/10.1530/REP-08-0503
  • Björndahl L, Kvist U. Human sperm chromatin stabilization: a proposed model including zinc bridges. Mol Hum Reprod. 2010;16(1):23-9. http://dx.doi.org/10.1093/molehr/gap099 PMid:19933313.
    » http://dx.doi.org/10.1093/molehr/gap099
  • Blendy JA, Kaestner KH, Weinbauer GF, Nieschlag E, Schütz G. Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature. 1996;380(6570):162-5. http://dx.doi.org/10.1038/380162a0 PMid:8600391.
    » http://dx.doi.org/10.1038/380162a0
  • Bollwein H, Bittner L. Impacts of oxidative stress on bovine sperm function and subsequent in vitro embryo development. Anim Reprod. 2018;15(Suppl 1):703-10. http://dx.doi.org/10.21451/1984-3143-AR2018-0041 PMid:36249836.
    » http://dx.doi.org/10.21451/1984-3143-AR2018-0041
  • Carreira JT, Trevizan JT, Kipper BH, Perri SHV, Carvalho IR, Rodrigues LH, Silva C, Koivisto MB. Impaired protamination and sperm DNA damage in a Nellore bull with high percentages of morphological sperm defects in comparison to normospermic bulls. Arq Bras Med Vet Zootec. 2015;67(2):417-23. http://dx.doi.org/10.1590/1678-7046
    » http://dx.doi.org/10.1590/1678-7046
  • Castro LS, Siqueira AFP, Hamilton TRS, Mendes CM, Visintin JA, Assumpção MEOA. Effect of bovine sperm chromatin integrity evaluated using three different methods on in vitro fertility. Theriogenology. 2018;107:142-8. http://dx.doi.org/10.1016/j.theriogenology.2017.11.006 PMid:29154161.
    » http://dx.doi.org/10.1016/j.theriogenology.2017.11.006
  • Cho C, Jung-Ha H, Willis WD, Goulding EH, Stein P, Xu Z, Schultz RM, Hecht NB, Eddy EM. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod. 2003;69(1):211-7. http://dx.doi.org/10.1095/biolreprod.102.015115 PMid:12620939.
    » http://dx.doi.org/10.1095/biolreprod.102.015115
  • Choi HY, Kim SK, Kim SH, Choi YM, Jee BC. Impact of sperm DNA fragmentation on clinical in vitro fertilization outcomes. Clin Exp Reprod Med. 2017;44(4):224-31. http://dx.doi.org/10.5653/cerm.2017.44.4.224 PMid:29376020.
    » http://dx.doi.org/10.5653/cerm.2017.44.4.224
  • Codrington AM, Hales BF, Robaire B. Exposure of male rats to cyclophosphamide alters the chromatin structure and basic proteome in spermatozoa. Hum Reprod. 2007;22(5):1431-42. http://dx.doi.org/10.1093/humrep/dem002 PMid:17303633.
    » http://dx.doi.org/10.1093/humrep/dem002
  • Dadoune J. Expression of mammalian spermatozoal nucleoproteins. Microsc Res Tech. 2003;61(1):56-75. http://dx.doi.org/10.1002/jemt.10317 PMid:12672123.
    » http://dx.doi.org/10.1002/jemt.10317
  • Daly J, Smith H, McGrice HA, Kind KL, van Wettere WHEJ. Towards improving the outcomes of assisted reproductive technologies of cattle and sheep, with particular focus on recipient management. Animals. 2020;10(2):1-15. http://dx.doi.org/10.3390/ani10020293 PMid:32069818.
    » http://dx.doi.org/10.3390/ani10020293
  • DeJarnette JM. The effect of semen quality on reproductive efficiency. Vet Clin North Am Food Anim Pract. 2005;21(2):409-18. http://dx.doi.org/10.1016/j.cvfa.2005.02.011 PMid:15955437.
    » http://dx.doi.org/10.1016/j.cvfa.2005.02.011
  • Dogan S, Vargovic P, Oliveira R, Belser LE, Kaya A, Moura A, Sutovsky P, Parrish J, Topper E, Memili E. Sperm Protamine-Status Correlates to the Fertility of Breeding Bulls1. Biol Reprod. 2015;92(4):92. http://dx.doi.org/10.1095/biolreprod.114.124255 PMid:25673563.
    » http://dx.doi.org/10.1095/biolreprod.114.124255
  • Eid LN, Lorton SF, Parrish JJ. Paternal influence on S-phase in the first cell cycle of the bovine embryo. Biol Reprod. 1994;51(6):1232-7. http://dx.doi.org/10.1095/biolreprod51.6.1232 PMid:7888500.
    » http://dx.doi.org/10.1095/biolreprod51.6.1232
  • Enciso M, Cisale H, Johnston SD, Sarasa J, Fernández JL, Gosálvez J. Major morphological sperm abnormalities in the bull are related to sperm DNA damage. Theriogenology. 2011;76(1):23-32. http://dx.doi.org/10.1016/j.theriogenology.2010.12.034 PMid:21529921.
    » http://dx.doi.org/10.1016/j.theriogenology.2010.12.034
  • England K, O’Driscoll C, Cotter TG. Carbonylation of glycolytic proteins is a key response to drug-induced oxidative stress and apoptosis. Cell Death Differ. 2004;11(3):252-60. http://dx.doi.org/10.1038/sj.cdd.4401338 PMid:14631408.
    » http://dx.doi.org/10.1038/sj.cdd.4401338
  • Erkek S, Hisano M, Liang CY, Gill M, Murr R, Dieker J, Schübeler D, van der Vlag J, Stadler MB, Peters AH. Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat Struct Mol Biol. 2013;20(7):868-75. http://dx.doi.org/10.1038/nsmb.2599 PMid:23770822.
    » http://dx.doi.org/10.1038/nsmb.2599
  • Evenson DP, Wixon R. Clinical aspects of sperm DNA fragmentation detection and male infertility. Theriogenology. 2006;65(5):979-91. http://dx.doi.org/10.1016/j.theriogenology.2005.09.011 PMid:16242181.
    » http://dx.doi.org/10.1016/j.theriogenology.2005.09.011
  • Fatehi AN, Bevers MM, Schoevers E, Roelen BAJ, Colenbrander B, Gadella BM. DNA damage in bovine sperm does not block fertilization and early embryonic development but induces apoptosis after the first cleavages. J Androl. 2006;27(2):176-88. http://dx.doi.org/10.2164/jandrol.04152 PMid:16304212.
    » http://dx.doi.org/10.2164/jandrol.04152
  • Feugang JM, Rodriguez-Osorio N, Kaya A, Wang H, Page G, Ostermeier GC, Topper EK, Memili E. Transcriptome analysis of bull spermatozoa: implications for male fertility. Reprod Biomed Online. 2010;21(3):312-24. http://dx.doi.org/10.1016/j.rbmo.2010.06.022 PMid:20638337.
    » http://dx.doi.org/10.1016/j.rbmo.2010.06.022
  • Flowers WL. Triennial Reproduction Symposium: sperm characteristics that limit success of fertilization. J Anim Sci. 2013;91(7):3022-9. http://dx.doi.org/10.2527/jas.2012-5945 PMid:23307855.
    » http://dx.doi.org/10.2527/jas.2012-5945
  • Fortes MRS, Satake N, Corbet DH, Corbet NJ, Burns BM, Moore SS, Boe-Hansen GB. Sperm protamine deficiency correlates with sperm DNA damage in Bos indicus bulls. Andrology. 2014;2(3):370-8. http://dx.doi.org/10.1111/j.2047-2927.2014.00196.x PMid:24634207.
    » http://dx.doi.org/10.1111/j.2047-2927.2014.00196.x
  • Fraga CG, Motchnik PA, Wyrobek AJ, Rempel DM, Ames BN. Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutat Res. 1996;351(2):199-203. http://dx.doi.org/10.1016/0027-5107(95)00251-0 PMid:8622715.
    » http://dx.doi.org/10.1016/0027-5107(95)00251-0
  • Freundl G, Grimm HJ, Hofmann N. Selective filtration of abnormal spermatozoa by the cervical mucus*. Hum Reprod. 1988;3(3):277-80. http://dx.doi.org/10.1093/oxfordjournals.humrep.a136695 PMid:3372692.
    » http://dx.doi.org/10.1093/oxfordjournals.humrep.a136695
  • Gao Y, Jian L, Lu W, Xue Y, Machaty Z, Luo H. Vitamin E can promote spermatogenesis by regulating the expression of proteins associated with the plasma membranes and protamine biosynthesis. Gene. 2021;773:145364. http://dx.doi.org/10.1016/j.gene.2020.145364 PMid:33359122.
    » http://dx.doi.org/10.1016/j.gene.2020.145364
  • Garcia-Oliveros LN, Arruda RP, Batissaco L, Gonzaga VHG, Nogueira VJM, Florez-Rodriguez SA, Almeida FS, Alves MBR, Pinto SCC, Nichi M, Losano JDA, Kawai GKV, Celeghini ECC. Heat stress effects on bovine sperm cells : a chronological approach to early findings. Int J Biometeorol. 2020;64(8):1367-78. http://dx.doi.org/10.1007/s00484-020-01917-w PMid:32388687.
    » http://dx.doi.org/10.1007/s00484-020-01917-w
  • Gosálvez Berenguer J, Caballero Peregrín P, López-Fernández C, Fernández JL, Núñez Calonge R. Fragmentación del ADN espermático. Rev Int Androl. 2008;6(3):193-209. http://dx.doi.org/10.1016/S1698-031X(08)76145-4
    » http://dx.doi.org/10.1016/S1698-031X(08)76145-4
  • Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik JAN. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl. 2005;26(3):349-53. http://dx.doi.org/10.2164/jandrol.04146 PMid:15867002.
    » http://dx.doi.org/10.2164/jandrol.04146
  • Hamidian S, Talebi AR, Fesahat F, Bayat M, Mirjalili AM, Ashrafzadeh HR, Rajabi M, Montazeri F, Babaei S. The effect of vitamin C on the gene expression profile of sperm protamines in the male partners of couples with recurrent pregnancy loss: a randomized clinical trial. Clin Exp Reprod Med. 2020;47(1):68-76. http://dx.doi.org/10.5653/cerm.2019.03188 PMid:32146776.
    » http://dx.doi.org/10.5653/cerm.2019.03188
  • Hamilton TRDS, Siqueira AFP, Castro LS, Mendes CM, Delgado JDC, Assis PM, Mesquita LP, Maiorka PC, Nichi M, Goissis MD, Visintin JA, Assumpção MEODA. Effect of heat stress on sperm DNA: protamine assessment in ram spermatozoa and testicle. Oxid Med Cell Longev. 2018;2018:5413056. http://dx.doi.org/10.1155/2018/5413056 PMid:29765499.
    » http://dx.doi.org/10.1155/2018/5413056
  • Hamilton TRS, Simões R, Assumpção MEODA. An improved acetic acid-urea polyacrylamide electrophoresis method to evaluate bovine sperm protamines. Reprod Domest Anim. 2021;56(7):1050-6. http://dx.doi.org/10.1111/rda.13941 PMid:33890330.
    » http://dx.doi.org/10.1111/rda.13941
  • Hamilton TRS, Simões R, Mendes CM, Goissis MD, Nakajima E, Martins EAL, Visintin JA, Assumpção MEOA. Detection of protamine 2 in bovine spermatozoa and testicles. Andrology. 2019;7(3):373. http://dx.doi.org/10.1111/andr.12610 PMid:30920782.
    » http://dx.doi.org/10.1111/andr.12610
  • Hammoud S, Emery BR, Aoki VW, Carrell DT. Identification of genetic variation in the 5′ and 3′ non-coding regions of the protamine genes in patients with protamine deregulation. Arch Androl. 2007;53(5):267-74. http://dx.doi.org/10.1080/01485010701569890 PMid:18309899.
    » http://dx.doi.org/10.1080/01485010701569890
  • Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473-8. http://dx.doi.org/10.1038/nature08162 PMid:19525931.
    » http://dx.doi.org/10.1038/nature08162
  • Harayama H, Minami K, Kishida K, Noda T. Protein biomarkers for male artificial insemination subfertility in bovine spermatozoa. Reprod Med Biol. 2017;16(2):89-98. http://dx.doi.org/10.1002/rmb2.12021 PMid:29259456.
    » http://dx.doi.org/10.1002/rmb2.12021
  • Hikim APS, Lue Y, Yamamoto CM, Vera Y, Rodriguez S, Yen PH, Soeng K, Wang C, Swerdloff RS. Key apoptotic pathways for heat-induced programmed germ cell death in the testis. Endocrinology. 2003;144(7):3167-75. http://dx.doi.org/10.1210/en.2003-0175 PMid:12810573.
    » http://dx.doi.org/10.1210/en.2003-0175
  • Hlady RA, Robertson KD. Use of chromatin changes as biomarkers. In: Binda O, Fernandez-Zapico ME, editors. Chromatin signaling and diseases. London: Elsevier; 2016. http://dx.doi.org/10.1016/B978-0-12-802389-1.00022-8
    » http://dx.doi.org/10.1016/B978-0-12-802389-1.00022-8
  • Inchaisri C, Jorritsma R, Vos PLAM, van der Weijden GC, Hogeveen H. Economic consequences of reproductive performance in dairy cattle. Theriogenology. 2010;74(5):835-46. http://dx.doi.org/10.1016/j.theriogenology.2010.04.008 PMid:20580069.
    » http://dx.doi.org/10.1016/j.theriogenology.2010.04.008
  • Jung YH, Sauria MEG, Lyu X, Cheema MS, Ausio J, Taylor J, Corces VG. Chromatin states in mouse sperm correlate with embryonic and adult regulatory landscapes. Cell Rep. 2017;18(6):1366-82. http://dx.doi.org/10.1016/j.celrep.2017.01.034 PMid:28178516.
    » http://dx.doi.org/10.1016/j.celrep.2017.01.034
  • Kastelic JP. Male involvement in fertility and factors affecting semen quality in bulls. Anim Front. 2013;3(4):20-5. http://dx.doi.org/10.2527/af.2013-0029
    » http://dx.doi.org/10.2527/af.2013-0029
  • Kidder HE, Black WG, Wiltbank JN, Ulberg LC, Casida LE. Fertilization Rates and Embryonic Death Rates in Cows Bred to Bulls of Different Levels of Fertility. J Dairy Sci. 1954;37(6):691-7. http://dx.doi.org/10.3168/jds.S0022-0302(54)91314-4
    » http://dx.doi.org/10.3168/jds.S0022-0302(54)91314-4
  • Kiefer H, Sellem E, Bonnet-Garnier A, Pannetier M, Costes V, Schibler L, Jammes H. The epigenome of male germ cells and the programming of phenotypes in cattle. Anim Front. 2021;11(6):28-38. http://dx.doi.org/10.1093/af/vfab062 PMid:34934527.
    » http://dx.doi.org/10.1093/af/vfab062
  • Kim B, Park K, Rhee K. Heat stress response of male germ cells. Cell Mol Life Sci. 2013;70(15):2623-36. http://dx.doi.org/10.1007/s00018-012-1165-4 PMid:23007846.
    » http://dx.doi.org/10.1007/s00018-012-1165-4
  • Kleene KC. Patterns, mechanisms, and functions of translation regulation in mammalian spermatogenic cells. Cytogenet Genome Res. 2003;103(3-4):217-24. http://dx.doi.org/10.1159/000076807 PMid:15051942.
    » http://dx.doi.org/10.1159/000076807
  • Kutchy NA, Velho A, Menezes ESB, Jacobsen M, Thibaudeau G, Wills RW, Moura A, Kaya A, Perkins A, Memili E. Testis specific histone 2B is associated with sperm chromatin dynamics and bull fertility: a pilot study. Reprod Biol Endocrinol. 2017;15(1):59. http://dx.doi.org/10.1186/s12958-017-0274-1 PMid:28764714.
    » http://dx.doi.org/10.1186/s12958-017-0274-1
  • Larson JL, Miller DJ. Can relative spermatozoal galactosyltransferase activity be predictive of dairy bull fertility? J Dairy Sci. 2000;83(11):2473-9. http://dx.doi.org/10.3168/jds.S0022-0302(00)75139-3 PMid:11104266.
    » http://dx.doi.org/10.3168/jds.S0022-0302(00)75139-3
  • Lee K, Fajardo MA, Braun RE. A testis cytoplasmic RNA-binding protein that has the properties of a translational repressor. Mol Cell Biol. 1996;16(6):3023-34. http://dx.doi.org/10.1128/MCB.16.6.3023 PMid:8649414.
    » http://dx.doi.org/10.1128/MCB.16.6.3023
  • Lee K, Haugen HS, Clegg CH, Braun RE. Premature translation of protamine 1 mRNA causes precocious nuclear condensation and arrests spermatid differentiation in mice. Proc Natl Acad Sci USA. 1995;92(26):12451-5. http://dx.doi.org/10.1073/pnas.92.26.12451 PMid:8618919.
    » http://dx.doi.org/10.1073/pnas.92.26.12451
  • Lewis JD, Abbott DW, Ausió J. A haploid affair: core histone transitions during spermatogenesis. Biochem Cell Biol. 2003;81(3):131-40. http://dx.doi.org/10.1139/o03-045 PMid:12897846.
    » http://dx.doi.org/10.1139/o03-045
  • Llavanera M, Ribas-Maynou J, Delgado-Bermúdez A, Recuero S, Muiño R, Hidalgo CO, Tamargo C, Bonet S, Mateo-Otero Y, Yeste M. Sperm chromatin condensation as an in vivo fertility biomarker in bulls: a flow cytometry approach. J Anim Sci Biotechnol. 2021;12(1):115. http://dx.doi.org/10.1186/s40104-021-00634-7 PMid:34749810.
    » http://dx.doi.org/10.1186/s40104-021-00634-7
  • Maier W, Nussbaum G, Domenjoud L, Klemm U, Engel W. The lack of protamine 2 (P2) in boar and bull spermatozoa is due to mutations within the P2 gene. Nucleic Acids Res. 1990;18(5):1249-54. http://dx.doi.org/10.1093/nar/18.5.1249 PMid:2320417.
    » http://dx.doi.org/10.1093/nar/18.5.1249
  • Meistrich ML, Mohapatra B, Shirley CR, Zhao M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma. 2003;111(8):483-8. http://dx.doi.org/10.1007/s00412-002-0227-z PMid:12743712.
    » http://dx.doi.org/10.1007/s00412-002-0227-z
  • Ni K, Spiess AN, Schuppe HC, Steger K. The impact of sperm protamine deficiency and sperm DNA damage on human male fertility: a systematic review and meta-analysis. Andrology. 2016;4(5):789-99. http://dx.doi.org/10.1111/andr.12216 PMid:27231200.
    » http://dx.doi.org/10.1111/andr.12216
  • Oleszczuk K, Augustinsson L, Bayat N, Giwercman A, Bungum M. Prevalence of high DNA fragmentation index in male partners of unexplained infertile couples. Andrology. 2013;1(3):357-60. http://dx.doi.org/10.1111/j.2047-2927.2012.00041.x PMid:23596042.
    » http://dx.doi.org/10.1111/j.2047-2927.2012.00041.x
  • Oliva R, De Mateo S, Estanyol JM. Sperm cell proteomics. Proteomics. 2009;9(4):1004-17. http://dx.doi.org/10.1002/pmic.200800588 PMid:19212950.
    » http://dx.doi.org/10.1002/pmic.200800588
  • Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12(4):417-35. http://dx.doi.org/10.1093/humupd/dml009 PMid:16581810.
    » http://dx.doi.org/10.1093/humupd/dml009
  • Pardede BP, Agil M, Supriatna I. Protamine and other proteins in sperm and seminal plasma as molecular markers of bull fertility. Vet World. 2020;13(3):556-62. http://dx.doi.org/10.14202/vetworld.2020.556-562 PMid:32367964.
    » http://dx.doi.org/10.14202/vetworld.2020.556-562
  • Paul C, Murray AA, Spears N, Saunders PTK. A single, mild, transient scrotal heat stress causes DNA damage, subfertility and impairs formation of blastocysts in mice. Reproduction. 2008;136(1):73-84. http://dx.doi.org/10.1530/REP-08-0036 PMid:18390691.
    » http://dx.doi.org/10.1530/REP-08-0036
  • Pérez-Crespo M, Pintado B, Gutiérrez-Adán A. Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Mol Reprod Dev. 2008;75(1):40-7. http://dx.doi.org/10.1002/mrd.20759 PMid:17474098.
    » http://dx.doi.org/10.1002/mrd.20759
  • Pugacheva EM, Rivero-Hinojosa S, Espinoza CA, Méndez-Catalá CF, Kang S, Suzuki T, Kosaka-Suzuki N, Robinson S, Nagarajan V, Ye Z, Boukaba A, Rasko JE, Strunnikov AV, Loukinov D, Ren B, Lobanenkov VV. Comparative analyses of CTCF and BORIS occupancies uncover two distinct classes of CTCF binding genomic regions. Genome Biol. 2015;16(1):161. http://dx.doi.org/10.1186/s13059-015-0736-8 PMid:26268681.
    » http://dx.doi.org/10.1186/s13059-015-0736-8
  • Rahman MB, Kamal MM, Rijsselaere T, Vandaele L, Shamsuddin M, Van Soom A. Altered chromatin condensation of heat-stressed spermatozoa perturbs the dynamics of DNA methylation reprogramming in the paternal genome after in vitro fertilisation in cattle. Reprod Fertil Dev. 2014;26(8):1107-16. http://dx.doi.org/10.1071/RD13218 PMid:24041366.
    » http://dx.doi.org/10.1071/RD13218
  • Rahman MB, Vandaele L, Rijsselaere T, Maes D, Hoogewijs M, Frijters A, Noordman J, Granados A, Dernelle E, Shamsuddin M, Parrish JJ, Van Soom A. Scrotal insulation and its relationship to abnormal morphology, chromatin protamination and nuclear shape of spermatozoa in Holstein-Friesian and Belgian Blue bulls. Theriogenology. 2011;76(7):1246-57. http://dx.doi.org/10.1016/j.theriogenology.2011.05.031 PMid:21777969.
    » http://dx.doi.org/10.1016/j.theriogenology.2011.05.031
  • Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. Biochim Biophys Acta. 2014;1839(3):155-68. http://dx.doi.org/10.1016/j.bbagrm.2013.08.004 PMid:24091090.
    » http://dx.doi.org/10.1016/j.bbagrm.2013.08.004
  • Ravel C, Chantot-Bastaraud S, El Houate B, Berthaut I, Verstraete L, De Larouziere V, Lourenço D, Dumaine A, Antoine JM, Mandelbaum J, Siffroi JP, McElreavey K. Mutations in the protamine 1 gene associated with male infertility. Mol Hum Reprod. 2007;13(7):461-4. http://dx.doi.org/10.1093/molehr/gam031 PMid:17494104.
    » http://dx.doi.org/10.1093/molehr/gam031
  • Saacke RG. Sperm morphology: its relevance to compensable and uncompensable traits in semen. Theriogenology. 2008;70(3):473-8. http://dx.doi.org/10.1016/j.theriogenology.2008.04.012
    » http://dx.doi.org/10.1016/j.theriogenology.2008.04.012
  • Saito H, Hara K, Kitajima S, Tanemura K. Effect of vitamin E deficiency on spermatogenesis in mice and its similarity to aging. Reprod Toxicol. 2020;98:225-32. http://dx.doi.org/10.1016/j.reprotox.2020.10.003 PMid:33045311.
    » http://dx.doi.org/10.1016/j.reprotox.2020.10.003
  • Samans B, Yang Y, Krebs S, Sarode GV, Blum H, Reichenbach M, Wolf E, Steger K, Dansranjavin T, Schagdarsurengin U. Uniformity of nucleosome preservation pattern in mammalian sperm and Its connection to repetitive DNA elements. Dev Cell. 2014;30(1):23-35. http://dx.doi.org/10.1016/j.devcel.2014.05.023 PMid:24998597.
    » http://dx.doi.org/10.1016/j.devcel.2014.05.023
  • Schneider S, Balbach M, Jan F Jikeli, Fietz D, Nettersheim D, Jostes S, Schmidt R, Kressin M, Bergmann M, Wachten D, Steger K, Schorle H. Re-visiting the Protamine-2 locus: Deletion, but not haploinsufficiency, renders male mice infertile. Sci Rep. 2016;6(1):36764. http://dx.doi.org/10.1038/srep36764 PMid:27833122.
    » http://dx.doi.org/10.1038/srep36764
  • Seegers H, Fourichon C, Malher X, L’Hostis M. A framework for animal health management. Vet Res. 1994;25(2-3):165-73. PMid:8038779.
  • Shamsuddin M, Larsson B. In vitro development of bovine embryos after fertilization using semen from different donors. Reprod Domest Anim. 1993;28(2):77-84. http://dx.doi.org/10.1111/j.1439-0531.1993.tb01156.x
    » http://dx.doi.org/10.1111/j.1439-0531.1993.tb01156.x
  • Shinagawa T, Huynh LM, Takagi T, Tsukamoto D, Tomaru C, Kwak HG, Dohmae N, Noguchi J, Ishii S. Disruption of TH2a and TH2b genes causes defects in spermatogenesis. Development. 2015;142(7):1287-92. PMid:25742800.
  • Simões R, Feitosa WB, Siqueira AFP, Nichi M, Paula-Lopes FF, Marques MG, Peres MA, Barnabe VH, Visintin JA, Assumpção ME. Influence of bovine sperm DNA fragmentation and oxidative stress on early embryo in vitro development outcome. Reproduction. 2013;146(5):433-41. http://dx.doi.org/10.1530/REP-13-0123 PMid:23940385.
    » http://dx.doi.org/10.1530/REP-13-0123
  • Souza ET, Silva CV, Travençolo BAN, Alves BG, Beletti ME. Sperm chromatin alterations in fertile and subfertile bulls. Reprod Biol. 2018;18(2):177-81. http://dx.doi.org/10.1016/j.repbio.2018.04.001 PMid:29705068.
    » http://dx.doi.org/10.1016/j.repbio.2018.04.001
  • Steger K, Balhorn R. Sperm nuclear protamines: a checkpoint to control sperm chromatin quality. Anat Histol Embryol. 2018;47(4):273-9. http://dx.doi.org/10.1111/ahe.12361 PMid:29797354.
    » http://dx.doi.org/10.1111/ahe.12361
  • Takeda N, Yoshinaga K, Furushima K, Takamune K, Li Z, Abe SI, Aizawa S, Yamamura K. Viable offspring obtained from Prm1-deficient sperm in mice. Sci Rep. 2016;6(1):27409. http://dx.doi.org/10.1038/srep27409 PMid:27250771.
    » http://dx.doi.org/10.1038/srep27409
  • Talbert PB, Henikoff S. Histone variants ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol. 2010;11(4):264-75. http://dx.doi.org/10.1038/nrm2861 PMid:20197778.
    » http://dx.doi.org/10.1038/nrm2861
  • Vilfan ID, Conwell CC, Hud NV. Formation of native-like mammalian sperm cell chromatin with folded bull protamine. J Biol Chem. 2004;279(19):20088-95. http://dx.doi.org/10.1074/jbc.M312777200 PMid:14990583.
    » http://dx.doi.org/10.1074/jbc.M312777200
  • Villani P, Eleuteri P, Grollino MG, Rescia M, Altavista P, Spanò M, Pacchierotti F, Cordelli E. Sperm DNA fragmentation induced by DNAse I and hydrogen peroxide: an in vitro comparative study among different mammalian species. Reproduction. 2010;140(3):445-52. http://dx.doi.org/10.1530/REP-10-0176 PMid:20584992.
    » http://dx.doi.org/10.1530/REP-10-0176
  • Widayati D. Embryo transfer as an assisted reproductive technology in farm animals. World Acad Sci Eng Technol. 2012;6:10-21.
  • Wu PY, Scarlata E, O’Flaherty C. Long-term adverse effects of oxidative stress on rat epididymis and spermatozoa. Antioxidants. 2020;9(2):170. http://dx.doi.org/10.3390/antiox9020170 PMid:32093059.
    » http://dx.doi.org/10.3390/antiox9020170
  • Xing W, Krishnamurthy H, Sairam MR. Role of folltropin receptor signaling in nuclear protein transitions and chromatin condensation during spermatogenesis. Biochem Biophys Res Commun. 2003;312(3):697-701. http://dx.doi.org/10.1016/j.bbrc.2003.10.177 PMid:14680821.
    » http://dx.doi.org/10.1016/j.bbrc.2003.10.177
  • Yu J, Hecht NB, Schultz RM. RNA-binding properties and translation repression in vitro by germ cell-specific MSY2 protein. Biol Reprod. 2002;67(4):1093-8. http://dx.doi.org/10.1095/biolreprod67.4.1093 PMid:12297523.
    » http://dx.doi.org/10.1095/biolreprod67.4.1093
  • Yuen BTK, Bush KM, Barrilleaux BL, Cotterman R, Knoepfler PS. Histone H3.3 regulates dynamic chromatin states during spermatogenesis. Development. 2014;141(18):3483-94. http://dx.doi.org/10.1242/dev.106450 PMid:25142466.
    » http://dx.doi.org/10.1242/dev.106450
  • Zhu B, Walker SK, Oakey H, Setchell BP, Maddocks S. Effect of paternal heat stress on the development in vitro of preimplantation embryos in the mouse. Andrologia. 2004;36(6):384-94. http://dx.doi.org/10.1111/j.1439-0272.2004.00635.x PMid:15541055.
    » http://dx.doi.org/10.1111/j.1439-0272.2004.00635.x

Publication Dates

  • Publication in this collection
    04 Nov 2022
  • Date of issue
    2022

History

  • Received
    23 Oct 2021
  • Accepted
    10 Oct 2022
Colégio Brasileiro de Reprodução Animal Coronel José dias Bicalho, 1224, CEP: , 31275-050, Belo Horizonte, MG - Brasil, Tel.: 55-31-3491 7122 - Belo Horizonte - MG - Brazil
E-mail: animreprod.journal@gmail.com