Acessibilidade / Reportar erro

Integrating climate models into hydrological modelling: What’s going on in Brazil?

Integração de modelos de clima na modelagem hidrológica: o que está acontecendo no Brasil?

ABSTRACT

Studies integrating climate modelling output into hydrological modelling have grown substantially in the last two decades worldwide; however, there has not been a systematic review about those applications in the Brazilian territory. The aim of this study is to identify how the scientific community has been dealing with the topic in Brazil. The study is based on a systematic review of available peer-reviewed literature. We identify regions and socioeconomic sectors of interest and propose a method to evaluate the methodological consistency of the studies with the current state-of-the-art. The review shows that the topic has grown substantially in this decade, reaching 63 documents until 2018. The sectors under highest concern are the hydropower and the drinking water supply. The Paraná and Atlântico Nordeste Oriental hydrographic regions received great attention; whereas the Atlântico Sudeste did not. In terms of methodology, the use of multi-model ensemble leaves room for improvement. The results suggest a lack of human resources and access to computational infrastructure to handle climate data. Given the current challenges that Brazilian science is facing, we suggest the synchronization of efforts among research institutions. This systematic review provides information to help guiding decision makers to improve the topic in Brazil.

Keywords:
Climate models; Hydrological models; Systematic review

RESUMO

Estudos que integram modelagem climática em modelagem hidrológica têm crescido substancialmente nas últimas duas décadas em todo o mundo; entretanto, pouco se sabe sobre estes no território brasileiro. O objetivo deste estudo é identificar como a comunidade científica tem lidado com o tema no Brasil. O estudo baseia-se numa revisão sistemática da literatura revisada por pares disponível. Identificamos regiões e setores socioeconômicos de interesse e propomos um método para avaliar a consistência metodológica dos estudos com o atual estado-da-arte. A análise mostra que o tema cresceu substancialmente nesta década, abrangendo 63 documentos até 2018. Os setores de maior interesse são o de energia hidrelétrica e de abastecimento de água potável. As regiões hidrográficas do Paraná e do Atlântico Nordeste Oriental receberam grande atenção; enquanto a região Atlântico Sudeste pouca. Em termos de metodologia, o uso do conjunto de multi-modelos deixa espaço para melhorias. Os resultados sugerem limitações em capacidade técnica e em acesso à infraestrutura computacional para lidar com dados climáticos. Diante dos atuais desafios que a ciência brasileira enfrenta, sugerimos a sincronização de esforços entre instituições de pesquisa. Esta revisão sistemática fornece informações que podem ajudar os tomadores de decisão em ações de aprimoramento do tema no Brasil.

Palavras-chave:
Modelos de clima; Modelos hidrológicos; Revisão sistemática

INTRODUCTION

The Brazilian National Plan for Climate Change Adaptation (Plano Nacional de Adaptação à Mudança do Clima - PNA) establishes among its objectives the improvement of the climate projections and the support to incorporate climate change information into adaptation plans (BRASIL, 2016BRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. National Adaptation Plan to Climate Change: volume I: general strategy. Brasília: MMA, 2016. Available from: <http://www.mma.gov.br/images/arquivo/80182/PNA_Volume%20I_EN.pdf>. Access on: 10 ago. 2017.
http://www.mma.gov.br/images/arquivo/801...
). At the same time, the Projeto Legado (ANA, 2017ANA – AGÊNCIA NACIONAL DE ÁGUAS. ProjetoLEGADO: Uma agenda para aperfeiçoamento dos marcos constitucional, legal e infralegal da gestão de águas no Brasil. Preparação para o 8o fórum mundial da água. Brasília, DF: ANA, 2017. Available in: <http://arquivos.ana.gov.br/projetos/legado/DocumentoBase-VersaoZero.4_20171110.pdf>.
http://arquivos.ana.gov.br/projetos/lega...
) foresees the use of climate change scenarios as subsidy for the National Strategic Plan for Water Security. To achieve those goals, the first step is to assess how the scientific community is dealing with the issue in Brazil. Studies integrating climate change information into hydrological modelling have grown substantially in the last two decades worldwide (KUNDZEWICZ et al., 2018KUNDZEWICZ, Z. W.; KRYSANOVA, V.; BENESTAD, R. E.; HOV, Ø.; PINIEWSKI, M.; OTTO, I. M. Uncertainty in climate change impacts on water resources. Environmental Science & Policy, v. 79, p. 1-8, 2018. http://dx.doi.org/10.1016/j.envsci.2017.10.008.
http://dx.doi.org/10.1016/j.envsci.2017....
); however, there has not been a systematic review about them in the Brazilian territory.

Borges and Chaffe (2019)BORGES, P. A.; CHAFFE, P. B. Towards a comprehensive characterization of evidence in synthesis assessments: climate change impacts on the Brazilian water resources. Climatic Change, v. 153, p. 1-21, 2019. https://dx.doi.org/10.1007/s10584-019-02430-9
https://dx.doi.org/10.1007/s10584-019-02...
conducted a synthesis assessment about the impacts of climate change on the Brazilian water resources. They concluded that the recommended use of multi-model ensemble has been rarely applied. Nevertheless, there is a substantial consensus in the literature about potential change in the availability of water resources in Brazil, such as changes into a drier hydrological regime. Here, we extend the work of Borges and Chaffe (2019)BORGES, P. A.; CHAFFE, P. B. Towards a comprehensive characterization of evidence in synthesis assessments: climate change impacts on the Brazilian water resources. Climatic Change, v. 153, p. 1-21, 2019. https://dx.doi.org/10.1007/s10584-019-02430-9
https://dx.doi.org/10.1007/s10584-019-02...
with a review of the current state-of-the-practice of the integration of climate model outputs into hydrological models in Brazil. The study is based on a systematic review of all available peer-reviewed literature classified by regions and socioeconomic sectors of interest. We evaluate the methodological consistency of those studies with the current state-of-the-art, identify their strengths and limitations, and discuss how research institutions can improve their practices. Assessing how the scientific community is dealing with the use of climate information in hydrological modelling is a crucial step to understand the challenges and opportunities for the improvement of the topic in Brazil.

MATERIALS AND METHODS

Paper selection and systematic review

A comprehensive literature search was carried out in order to identify peer-reviewed scientific articles that integrate climate model outputs into hydrological modelling in the Brazilian territory. We used three science databases: Scopus, Web of Science and Google Scholar (HARZING; ALAKANGAS, 2016HARZING, A.-W.; ALAKANGAS, S. Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison. Scientometrics, v. 106, n. 2, p. 787-804, 2016. http://dx.doi.org/10.1007/s11192-015-1798-9.
http://dx.doi.org/10.1007/s11192-015-179...
). We also considered the Scientific Electronic Library Online (SciELO) and the following Brazilian scientific journals: Anais da Academia Brasileira de Ciências (AABC), Brazilian Journal of Water Resources, Ciência e Agrotecnologia (CAGRO), Revista Brasileira de Climatologia, Revista Brasileira de Engenharia Agrícola e Ambiental (AGRIAMBI), Revista Brasileira de Meteorologia (RBMet) and Revista Engenharia Agrícola (EAGRI).

The search considered articles published until December 2018. Articles written in English and Portuguese were included. Publications such as book chapters, doctoral dissertations and conference papers were not taken into account. To find the documents, Boolean functions were applied to match the following keywords in the title, abstract or keywords: [‘climate model’ OR gcm OR aogcm OR oagcm OR ‘climate change’] AND [hydrologic OR hydrology OR hydrological OR hydraulic OR ‘rainfall-runoff’] AND [Brazil]. Initially the search yielded hundreds of documents, but only 63 were considered relevant for the purpose of this study. The documents are listed in the Table 1, wherein sixteen were published in Brazilian scientific journals.

Table 1
List of articles.

The systematic review is organized in three major groups that embraces eight aspects for analysis (Figure 1). The year of publication and Impact Factor (IF, Journal Citation Reports of the Institute for Scientific Information) indicate the level of concern of the scientific community. The second group corresponds to the interest, which is divided in hydrographic region, sector and purpose. The third group corresponds to the approach adopted in the studies: i) the quantity and version of the climate models (General Circulation Models – GCM or Earth System Models - ESM), ii) the application of regionalization techniques, and iii) type and quantity of hydrological models.

Figure 1
Flowchart of the search and characterization of the systematic review.

Level of comprehensiveness of the studies

The considerable quantity of documents found provides plausible messages of the state-of-the-practice in applying climate scenarios in hydrological impact assessments in Brazil. The methodology used to evaluate the ‘level of comprehensiveness’ of a certain study was inspired in Mastrandrea et al. (2011)MASTRANDREA, M. D.; MACH, K. J.; PLATTNER, G.-K.; EDENHOFER, O.; STOCKER, T. F.; FIELD, C. B.; EBI, K. L.; MATSCHOSS, P. R. The IPCC AR5 guidance note on consistent treatment of uncertainties: a common approach across the working groups. Climatic Change, v. 108, n. 4, p. 675-691, 2011. http://dx.doi.org/10.1007/s10584-011-0178-6.
http://dx.doi.org/10.1007/s10584-011-017...
– the same one used in the Intergovernmental Panel on Climate Change’s (IPCC) Fifth Assessment Report (AR5) –, which depends on three aspects: i) theoretical foundation, ii) data used, and iii) sophistication of the modelling procedure. Each aspect is scored from 1 to 5, which are associated with the terms: very limited, limited, medium, fairly robust or robust. This analysis considered only studies addressing the impacts of climate change on water resources (i.e., 48 articles, see section Purpose).

Theoretical foundation

The theoretical foundation aspect refers to the regionalization procedure adopted. There are several ways to include projections of climate change in hydrological models. The most plausible and physically consistent representations of climate due to anthropogenic activity are those provided by climate models (WILBY et al., 2009WILBY, R. L.; TRONI, J.; BIOT, Y.; TEDD, L.; HEWITSON, B. C.; SMITH, D. M.; SUTTON, R. T. A review of climate risk information for adaptation and development planning. International Journal of Climatology, v. 29, n. 9, p. 1193-1215, 2009. http://dx.doi.org/10.1002/joc.1839.
http://dx.doi.org/10.1002/joc.1839...
). Due to the coarse resolution, GCMs are often not able to represent spatiotemporal variability of climatic variables (e.g., rainfall) at the scale required for hydrological studies. The application of regionalization techniques is therefore recommended (FOWLER; BLENKINSOP; TEBALDI, 2007FOWLER, H. J.; BLENKINSOP, S.; TEBALDI, C. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, v. 27, n. 12, p. 1547-1578, 2007. http://dx.doi.org/10.1002/joc.1556.
http://dx.doi.org/10.1002/joc.1556...
; MARAUN et al., 2010MARAUN, D.; WETTERHALL, F.; IRESON, A. M.; CHANDLER, R. E.; KENDON, E. J.; WIDMANN, M.; BRIENEN, S.; RUST, H. W.; SAUTER, T.; THEMEßL, M.; VENEMA, V. K. C.; CHUN, K. P.; GOODESS, C. M.; JONES, R. G.; ONOF, C.; VRAC, M.; THIELE-EICH, I. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics, v. 48, n. 3, p. RG3003, 2010. http://dx.doi.org/10.1029/2009RG000314.
http://dx.doi.org/10.1029/2009RG000314...
). We defined regionalization as downscaling and bias correction (BC). The downscaling is divided into two families, the dynamical (Regional Climate Model - RCM) and the statistical (Empirical Statistical Downscaling - ESD).

The RCMs have the same principles of GCMs in representing the dynamical and physical processes of the terrestrial system but in a much finer resolution and limited domain area. The ESD relies on the principle that local weather is a function of large-scale atmospheric patterns. A statistical function is used to estimate e.g., rainfall based on the large-scale relative humidity and zonal wind data at the 500hPa level. The BC is often mistaken by ESDs since both are based on empirical data. But in BC the predictor variable is the same as the target variable. That is, a transfer function is used to generate e.g., local rainfall from the precipitation simulated by a GCM. BC does not consider physical arguments and is thus less plausible than downscaling techniques. We found numerous studies in Brazil applying BC in combination with RCM outputs or even as a means of replacing downscaling. Although the application of BC is controversial in hydrological impact assessments (EHRET et al., 2012EHRET, U.; ZEHE, E.; WULFMEYER, V.; WARRACH-SAGI, K.; LIEBERT, J. Should we apply bias correction to global and regional climate model. Hydrology and Earth System Sciences, v. 16, n. 9, p. 3391-3404, 2012. http://dx.doi.org/10.5194/hess-16-3391-2012.
http://dx.doi.org/10.5194/hess-16-3391-2...
), we cannot neglect this step (TEUTSCHBEIN; SEIBERT, 2012TEUTSCHBEIN, C.; SEIBERT, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology, v. 456-457, p. 12-29, 2012. http://dx.doi.org/10.1016/j.jhydrol.2012.05.052.
http://dx.doi.org/10.1016/j.jhydrol.2012...
) and thus we assume BC as a simple form of regionalization. The pattern scaling technique is also often applied in hydrological impact studies (FOWLER; BLENKINSOP; TEBALDI, 2007FOWLER, H. J.; BLENKINSOP, S.; TEBALDI, C. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, v. 27, n. 12, p. 1547-1578, 2007. http://dx.doi.org/10.1002/joc.1556.
http://dx.doi.org/10.1002/joc.1556...
), for instance in Brazil (i.e., BRAVO et al., 2014BRAVO, J. M.; COLLISCHONN, W.; PAZ, A. R.; ALLASIA, D.; DOMECQ, F. Impact of projected climate change on hydrologic regime of the Upper Paraguay River basin. Climatic Change, v. 127, n. 1, p. 27-41, 2014. http://dx.doi.org/10.1007/s10584-013-0816-2.
http://dx.doi.org/10.1007/s10584-013-081...
; NÓBREGA et al., 2011NÓBREGA, M. T.; COLLISCHONN, W.; TUCCI, C. E. M.; PAZ, A. R. Uncertainty in climate change impacts on water resources in the Rio Grande Basin, Brazil. Hydrology and Earth System Sciences, v. 15, n. 2, p. 585-595, 2011. http://dx.doi.org/10.5194/hess-15-585-2011.
http://dx.doi.org/10.5194/hess-15-585-20...
; PERAZZOLI; PINHEIRO; KAUFMANN, 2013PERAZZOLI, M.; PINHEIRO, A.; KAUFMANN, V. Assessing the impact of climate change scenarios on water resources in southern Brazil. Hydrological Sciences Journal, v. 58, n. 1, p. 77-87, 2013. http://dx.doi.org/10.1080/02626667.2012.742195.
http://dx.doi.org/10.1080/02626667.2012....
). Due to the degree of sophistication, the pattern scaling is classified as ESD. For more details on the definitions adopted here see Maraun et al. (2010)MARAUN, D.; WETTERHALL, F.; IRESON, A. M.; CHANDLER, R. E.; KENDON, E. J.; WIDMANN, M.; BRIENEN, S.; RUST, H. W.; SAUTER, T.; THEMEßL, M.; VENEMA, V. K. C.; CHUN, K. P.; GOODESS, C. M.; JONES, R. G.; ONOF, C.; VRAC, M.; THIELE-EICH, I. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics, v. 48, n. 3, p. RG3003, 2010. http://dx.doi.org/10.1029/2009RG000314.
http://dx.doi.org/10.1029/2009RG000314...
.

Table 2 describes the scoring criteria adopted to classify the articles. The study that uses only GCM outputs without any regionalization is considered less theoretically sound and is given a score of 1. GCM combined with a very simple BC (e.g., Delta Change Factor - DCF), counts 2. When more sophisticated BC is applied (e.g., Quantile Mapping - QM), the study is given a score of 3. Studies integrating a GCM with either a RCM or a ESD gets 4 scores. A maximum scoring study should consider: i) the GCM outputs integrated with RCM followed by a BC, or ii) GCM with RCM in addition to GCM with ESD.

Table 2
Aspects and scores for rating the level of comprehensiveness of the studies.

Data used

A common approach in sampling all aspects of model uncertainties in climate impact assessments is the multi-model ensemble (MME). The MME is based on the assertion that no model performs better than another. The combination of several climate models has the potential to increase the skill, reliability and consistency of projections. The application of MME in impact assessments does not only benefit from error compensation and quantification of uncertainties, but also from its greater consistency and reliability (TEBALDI; KNUTTI, 2007TEBALDI, C.; KNUTTI, R. The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, v. 365, n. 1857, p. 2053-2075, 2007. https://dx.doi.org/10.1098/rsta.2007.2076
https://dx.doi.org/10.1098/rsta.2007.207...
). The MME approach is strongly recommended in hydrological impact assessments (KUNDZEWICZ et al., 2018KUNDZEWICZ, Z. W.; KRYSANOVA, V.; BENESTAD, R. E.; HOV, Ø.; PINIEWSKI, M.; OTTO, I. M. Uncertainty in climate change impacts on water resources. Environmental Science & Policy, v. 79, p. 1-8, 2018. http://dx.doi.org/10.1016/j.envsci.2017.10.008.
http://dx.doi.org/10.1016/j.envsci.2017....
). This category is dedicated to the quantity of GCM members used. Studies using a single GCM receive 1 score. Two GCMs obtain 2 scores. From three to nine GCMs, the study counts 3. From ten to nineteen GCMs, 4 scores. From twenty GCMs, the score is 5.

Sophistication of the modelling procedure

The criteria adopted was the version of the GCMs and the level of sophistication, and the quantity of the regionalization methods (REG) and hydrological models (HM). This group was thus divided into five sub-aspects: GCM, RCM, ESD, BC e HM. GCMs belonging to the Coupled Model Intercomparison Project Phase 3 (CMIP3) receive 4 scores, while the last version (i.e., CMIP5) gets 5. GCM versions prior to CMIP3 receive 2 scores. The CMIP3’s GCMs show a significant progress from previous versions. The version used in most studies of the Fourth Assessment Report (AR4) of the IPCC embraces the dynamics of important physical components of the climate system. The most relevant advances are: i) improvement of dynamical core; ii) increase of vertical and horizontal resolutions; iii) incorporation of process such as land surface and sea-ice, and iv) improvement of parametrizations (RANDALL; WOOD, 2007RANDALL, D. A.; WOOD, R. A. Climate Models and Their Evaluation. In: SOLOMON, S.; QIN D.; MANNING M.; CHEN Z.; MARQUIS M.; AVERYT K. B.; TIGNOR M. and MILLER H. L. (Eds.). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007. p. 589-662.). The CMIP5 includes the representation of various biogeochemical cycles (FLATO; MAROTZKE, 2013FLATO, G.; MAROTZKE, J. Evaluation of Climate Models. In: STOCKER, T. F.; QIN D.; PLATTNER G. K.; TIGNOR M.; ALLEN S. K.; BOSCHUNG J.; NAUELS A.; XIA Y.; BEX V. and MIDGLEY P.M. (Eds.). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge.: Cambridge University Press, 2013. p. 741-866.) which are key for better representing e.g., the carbon cycle (TAYLOR; STOUFFER; MEEHL, 2012TAYLOR, K. E.; STOUFFER, R. J.; MEEHL, G. A. An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, v. 93, n. 4, p. 485-498, 2012. http://dx.doi.org/10.1175/BAMS-D-11-00094.1.
http://dx.doi.org/10.1175/BAMS-D-11-0009...
). Although the last version includes more comprehensive models, the enhancement in estimating precipitation over South America is questionable (BLÁZQUEZ; NUÑEZ, 2013BLÁZQUEZ, J.; NUÑEZ, M. N. Analysis of uncertainties in future climate projections for South America: comparison of WCRP-CMIP3 and WCRP-CMIP5 models. Climate Dynamics, v. 41, n. 3-4, p. 1039-1056, 2013. http://dx.doi.org/10.1007/s00382-012-1489-7.
http://dx.doi.org/10.1007/s00382-012-148...
; GULIZIA; CAMILLONI, 2015GULIZIA, C.; CAMILLONI, I. Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. International Journal of Climatology, v. 35, n. 4, p. 583-595, 2015. http://dx.doi.org/10.1002/joc.4005.
http://dx.doi.org/10.1002/joc.4005...
; TORRES; MARENGO, 2014TORRES, R. R.; MARENGO, J. A. Climate change hotspots over South America: from CMIP3 to CMIP5 multi-model datasets. Theoretical and Applied Climatology, v. 117, n. 3-4, p. 579-587, 2014. http://dx.doi.org/10.1007/s00704-013-1030-x.
http://dx.doi.org/10.1007/s00704-013-103...
). The difference between both CMIP versions is thus only 1 score.

We did not consider any differentiation among the types of RCM. Any study that adopts one RCM get 3 scores no matter the model. If the study adopted more than one, then 1 score is added per RCM. For instance, studies considering three RCMs get 5 scores (3 + 1 + 1 = 5). The same criterion is valid for ESD, BC e HM. Exceptions are studies considering less sophisticated methods: i) the DCF for BC receives 1 score and, ii) simple empirical estimations (SEE) for HM (i.e., simple water budget, Thornthwaite-Mather and Artificial Neural Network) receives 2 scores, when adopted alone. The final score of the ‘sophistication of modelling procedure’ aspect is the arithmetic mean of the scores obtained among the sub-aspects (GCM, RCM, ESD, BC e HM). If the study did not apply any regionalization technique, the respective sub-aspect is not counted in the calculation. In case of an arithmetic mean resulting in a decimal number, the value is rounded to the nearest integer. All data regarding the articles and respective scoring are included as a spreadsheet file in the Supplementary Material Supplementary Material Supplementary material accompanies this paper. Table S1. Articles list database. This material is available as part of the online article from http://www.scielo.br/rbrh. (Table S1).

RESULTS AND DISCUSSION

Quantity and quality of the publications

The first scientific article about the subject in Brazil was published at the end of the 80s by Abramopoulos et al. (1988)ABRAMOPOULOS, F.; ROSENZWEIG, C.; CHOUDHURY, B. Improved Ground Hydrology Calculations for Global Climate Models (GCMs): Soil Water Movement and Evapotranspiration. Journal of Climate, v. 1, n. 9, p. 921-941, 1988. http://dx.doi.org/10.1175/1520-0442(1988)001<0921:IGHCFG>2.0.CO;2.
http://dx.doi.org/10.1175/1520-0442(1988...
. At that time, the subject was novel and studies constituted mainly of evaluation of model coupling between land-surface and atmosphere at the global scale, such as Marengo et al. (1994)MARENGO, J. A.; MILLER, J. R.; RUSSELL, G. L.; ROSENZWEIG, C. E.; ABRAMOPOULOS, F. Calculations of river-runoff in the GISS GGM: impact of a new land-surface parameterization and runoff routing model on the hydrology of the Amazon River. Climate Dynamics, v. 10, n. 6, p. 349-361, 1994. http://dx.doi.org/10.1007/BF00228032.
http://dx.doi.org/10.1007/BF00228032...
. More than one decade later, Krol et al. (2001)KROL, M.; JAEGER, A.; BRONSTERT, A.; KRYWKOW, J. The Semi-arid Integrated Model (SIM), a regional integrated model assessing water availability, vulnerability of ecosystems and society in NE-Brazil. Physics and Chemistry of the Earth. Part B: Hydrology, Oceans and Atmosphere, v. 26, n. 7-8, p. 529-533, 2001. http://dx.doi.org/10.1016/S1464-1909(01)00045-4.
http://dx.doi.org/10.1016/S1464-1909(01)...
starts the era of regional studies addressing the impact of climate change on water resources in Brazil. Since 2011, substantial increase in the quantity of publications per year is observed (Figure 2). The year of 2015 is the most productive with nine publications. The first articles are associated with high IF (≥ 4) due to the originality at that time. The increasing amount of publications with significant IF (≥ 2) shows the great interest on the subject in the current decade. Surprisingly, in 2018 only two articles were published.

Figure 2
Quantity of articles per year and respective IF.

Interest

Hydrographic regions

Figure 3 illustrates the hydrographic regions and respective quantity of studies by sector. It is important to note that in some cases more than one hydrographic region and/or sector is considered in the same study. Most of the papers (i.e., twenty-eight studies) focused on the Paraná (PRN) hydrographic region. The main interest is the hydropower sector (sixteen studies) followed by the drinking water supply (nine studies) and the agriculture (six studies). The PRN region has the greatest economic development of Brazil and is strongly dependent on energy supply from hydropower plants. The growth of urban areas, such as São Paulo, has generated great pressure on water resources and increased water use conflicts. With the highest energy and water demand in the country (BRASIL, 2006aBRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica do Paraná. Brasília, DF: MMA, 2006a. Available from: <www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011023747.pdf>. Access on: 10 ago. 2017.), it is not a surprise that most of the studies addressed the PRN.

Figure 3
Quantity of studies per hydrographic region and socioeconomic sector of interest. According to ANA (2017)ANA – AGÊNCIA NACIONAL DE ÁGUAS. ProjetoLEGADO: Uma agenda para aperfeiçoamento dos marcos constitucional, legal e infralegal da gestão de águas no Brasil. Preparação para o 8o fórum mundial da água. Brasília, DF: ANA, 2017. Available in: <http://arquivos.ana.gov.br/projetos/legado/DocumentoBase-VersaoZero.4_20171110.pdf>.
http://arquivos.ana.gov.br/projetos/lega...
, the hydrographic regions are: Amazônica (AMZ); Atlântico Nordeste Oriental (AOR); Atlântico Nordeste Ocidental (AOC); Atlântico Sudeste (ASD); Atlântico Leste (ALT); Atlântico Sul (ASU); Paraguai (PRG); Parnaíba (PNB); Paraná (PRN); São Francisco (SFO); Tocantins-Araguaia (TOC); Uruguai (URU).

The second region of highest interest is the Atlântico Nordeste Oriental (AOR), with eighteen studies. This region includes the Brazilian semi-arid and has the drinking water supply as the sector under highest concern (sixteen studies). The drinking water supply in the semi-arid is strongly dependent on artificial reservoirs, which are highly vulnerable to alterations in the climatic conditions (BRASIL, 2006bBRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica Atlântico Nordeste Oriental. Brasília: MMA, 2006b. Available from: <www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011024510.pdf>. Access on: 10 ago. 2017.)

Worldwide known for its water availability and biodiversity, the Amazônica (AMZ) region tends to be the focus when it comes to climate change (NOBRE et al., 2016NOBRE, C. A.; SAMPAIO, G.; BORMA, L. S.; CASTILLA-RUBIO, J. C.; SILVA, J. S.; CARDOSO, M. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proceedings of the National Academy of Sciences of the United States of America, v. 113, n. 39, p. 10759-10768, 2016. http://dx.doi.org/10.1073/pnas.1605516113.
http://dx.doi.org/10.1073/pnas.160551611...
). We found fifteen studies about the AMZ. The most relevant sectors in this region are hydropower (eight studies), drinking water supply and conservation (both with four studies). The studies available are in accordance with the current issues in the AMZ region. The largest and most biodiverse tropical rainforest in the world is under great concern. Recent socioeconomic growth in the region has brought about discussions on the traditional development models based on agriculture/pasture expansion and large inundated areas for hydropower production. Understanding the impacts of land cover and climate change on the water availability is crucial to guide proper adaptation strategies (BRASIL, 2006cBRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica Amazônica. Brasília: MMA, 2006c. Available from: <www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011024915.pdf>. Access on: 10 ago. 2017.).

The Tocantins-Araguaia (TOC) has great vocation for irrigated agriculture and hydropower production (BRASIL, 2006dBRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica do Tocantins-Araguaia. Brasília: MMA, 2006d. Available from: <www.mma.gov.br/estruturas/161/_publicacao/161_publicacao02032011035943.pdf>. Access on: 10 ago. 2017.). Ten studies considered the TOC region. The hydropower sector is of interest in eight studies. Agriculture and drinking water supply were addressed in three studies each.

The São Francisco (SFO) is known for the growth of agriculture, the intended revitalization of navigation, the increase in energy demand and the interbasin water transfer projects. The multiple uses of water resources in this region can induce to conflicts among the different sectors (BRASIL, 2006eBRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica do São Francisco. Brasília: MMA, 2006e. Available from: <www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011023538.pdf>. Access on: 10 ago. 2017.). Out of the eight studies about the region, six of them addressed hydropower production. Agriculture and drinking water supply were considered in three studies each.

As part of the La Plata basin, the Uruguai (URU) has great importance for the country due to its agroindustry and hydropower potential (BRASIL, 2006fBRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica do Uruguai. Brasília: MMA, 2006f. Available from: <www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011023025.pdf>. Access on: 10 ago. 2017.). The number of studies in the region (eight articles) corroborates that, agriculture and hydropower sectors are under concern in four studies each.

The Atlântico Leste (ALT) is characterized by high population density. Economic activities are mainly related to petrol-chemical industry, tourism and sugarcane and cacao production (BRASIL, 2006gBRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica Atlântico Leste. Brasília: MMA, 2006g. Available from: <www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011024710.pdf>. Access on: 10 ago. 2017.). Five studies were found. The drinking water supply sector is under concern in four of them.

The Atlântico Sul (ASU) is notable for its significant population contingent, for economic development and for its importance for tourism (BRASIL, 2006hBRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica Atlântico Sul. Brasília: MMA, 2006h. Available from: <www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011024106.pdf>. Access on: 10 ago. 2017.). We found five studies in the region. Agriculture and drinking water supply were addressed in three studies each.

The Paraguai (PRG) includes one of the largest wetlands on the planet, the Pantanal. Conservation of biodiversity is under high concern in the region, especially due to the recent expansion of pasture and agriculture (BRASIL, 2006iBRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica do Paraguai. Brasília: MMA, 2006i. Available from: <http://www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011023853.pdf>. Access on: 10 ago. 2017.
http://www.mma.gov.br/estruturas/161/_pu...
). Four studies addressed the PRG region. The sectors of interest are agriculture and drinking water supply (three studies each). Conservation was considered in one study.

Even with the high population and economic importance, the Atlântico Sudeste (ASD) presented only four studies. The region has serious problems with water supply (BRASIL, 2006jBRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica Atlântico Sudeste. Brasília: MMA, 2006j. Available from: <www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011024223.pdf>. Access on: 10 ago. 2017.). Two articles regarded the water supply sector. Also known for flood-related disasters (CEPED UFSC, 2013CEPED UFSC – CENTRO UNIVERSITÁRIO DE ESTUDOS E PESQUISAS SOBRE DESASTRES. UNIVERSIDADE FEDERAL DE SANTA CATARINA. Atlas brasileiro de desastres naturais 1991 a 2012: volume Brasil. Florianópolis: CEPED UFSC, 2013. Available in: <https://s2id.mi.gov.br/paginas/atlas/>. Accessed on: 12 jun. 2017.
https://s2id.mi.gov.br/paginas/atlas/...
), one study tackled the flood risk reduction sector in the region.

The main issues in the Parnaíba (PNB) are droughts, urban water supply, irrigation and conflicts of use (BRASIL, 2006kBRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica Parnaíba. Brasília: MMA, 2006k. Available from: <http://www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011023605.pdf>. Access on: 10 ago. 2017.
http://www.mma.gov.br/estruturas/161/_pu...
). The region was contemplated in three studies, wherein the agriculture and drinking water supply sectors were addressed in two studies each.

The Atlântico Nordeste Ocidental (AOC), where water criticality and deforestation are the main issues (BRASIL, 2006lBRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica Atlântico Nordeste Ocidental. Brasília: MMA, 2006l. Available from: <http://www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011024629.pdf>. Access on: 10 ago. 2017.
http://www.mma.gov.br/estruturas/161/_pu...
), was contemplated in two studies only. The agriculture and drinking water supply sectors were addressed in two studies each.

Socioeconomic Sectors

One of the main economic activities of Brazil, the agriculture was addressed in thirteen studies (Figure 3a). The agriculture sector is responsible for most of the water use in the country and there is a great potential for expansion through irrigation (ANA, 2013ANA – AGÊNCIA NACIONAL DE ÁGUAS. Conjuntura dos recursos hídricos no Brasil: 2013. Brasília, DF: ANA, 2013.). Despite the territorial extension and favorable physical factors, alterations on climatic conditions can significantly affect the water availability for this sector.

The conservation sector was considered in six studies (Figure 3b). Understanding the impacts of vegetation replacement on the water cycle is crucial to establish best practices for land and water conservation (STERLING; DUCHARNE; POLCHER, 2012STERLING, S. M.; DUCHARNE, A.; POLCHER, J. The impact of global land-cover change on the terrestrial water cycle. Nature Climate Change, v. 3, n. 4, p. 385-390, 2012. http://dx.doi.org/10.1038/nclimate1690.
http://dx.doi.org/10.1038/nclimate1690...
). Land use and cover change (LUCC) directly affects the water availability and quality of river basins. Runoff changes are often attributed to LUCC rather than rainfall variability (CHAGAS; CHAFFE, 2018CHAGAS, V. B. P.; CHAFFE, P. L. B. The Role of Land Cover in the Propagation of Rainfall Into Streamflow Trends. Water Resources Research, v. 54, n. 9, p. 5986-6004, 2018. http://dx.doi.org/10.1029/2018WR022947.
http://dx.doi.org/10.1029/2018WR022947...
). Besides the direct influence on the water cycle, climate determines natural land cover as well (SALAZAR; NOBRE; OYAMA, 2007SALAZAR, L. F.; NOBRE, C. A.; OYAMA, M. D. Climate change consequences on the biome distribution in tropical South America. Geophysical Research Letters, v. 34, n. 9, p. 16, 2007. http://dx.doi.org/10.1029/2007GL029695.
http://dx.doi.org/10.1029/2007GL029695...
). Assessing the vulnerability of water resources to non-climatic drivers, such as LUCC, and related feedback effects with regional climate is crucial to determine effective adaptation strategies (JIMÉNEZ CISNEROS et al., 2014JIMÉNEZ CISNEROS, B. E., et al. Freshwater resources. In: FIELD, C. B., BARROS V. R., DOKKEN D. J.; MACH K. J.; MASTRANDREA M. D.; BILIR T. E.; CHATTERJEE M.; EBI K. L.; ESTRADA Y. O.; GENOVA R. C.; GIRMA B.; KISSEL E. S.; LEVY A. N.; MACCRACKEN S.; MASTRANDREA P. R. and WHITE L. L. (Eds.). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014. p. 229-269.).

The drinking water supply sector is of the highest interest (twenty-seven studies, Figure 3c). Issues on water supply in Brazil are mainly related to the quantity in the semi-arid region and quality in urban areas. Recent climatic conditions have significantly affected the water supply in metropolitan regions such as São Paulo and Rio de Janeiro (ANA, 2014ANA – AGÊNCIA NACIONAL DE ÁGUAS. Encarte Especial sobre a Crise Hídrica. Conjuntura dos recursos hídricos no Brasil. Informe 2014. Brasília, DF: ANA, 2014.). Although COELHO et al., (2016)COELHO, C. A. S.; DE OLIVEIRA, C. P.; AMBRIZZI, T.; REBOITA, M. S.; CARPENEDO, C. B.; CAMPOS, J. L. P. S.; TOMAZIELLO, A. C. N.; PAMPUCH, L. A.; CUSTÓDIO, M. S.; DUTRA, L. M. M.; DA ROCHA, R. P.; REHBEIN, A. The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections. Climate Dynamics, v. 46, n. 11-12, p. 3737-3752, 2016. http://dx.doi.org/10.1007/s00382-015-2800-1.
http://dx.doi.org/10.1007/s00382-015-280...
attributed recent rainfall deficits to natural climate variability, the impacts of anthropogenic-induced climate change is still little known.

Floods are under high concern worldwide (IPCC, 2012IPCC – INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Managing the risks of extreme events and disasters to advance climate change adaption: special report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press, 2012.). In the last two decades, nearly 9 thousand disasters related to extreme hydrological events were registered in Brazil. Direct and indirect damages were estimated in R$72 billion (~US$22 billion, CEPED UFSC; WORLD BANK, 2016CEPED UFSC – CENTRO UNIVERSITÁRIO DE ESTUDOS E PESQUISAS SOBRE DESASTRES. UNIVERSIDADE FEDERAL DE SANTA CATARINA; WORLD BANK. Relatório de danos materiais e prejuízos decorrentes de desastres naturais no Brasil: 1995 - 2014. Florianópolis: CEPED UFSC; World Bank, 2016. Available from: <http://www.ceped.ufsc.br/wp-content/uploads/2017/01/111703-WP-CEPEDRelatoriosdeDanoslayout-PUBLIC-PORTUGUESE-ABSTRACT-SENT.pdf>. Access on: 12 jun. 2017.
http://www.ceped.ufsc.br/wp-content/uplo...
). Despite the great importance in terms of socioeconomic impacts, the flood risk reduction sector - in the context of climate change - was addressed in three studies only (Figure 3d).

The groundwater sector is of great importance in Brazil. According to (ANA, 2010ANA – AGÊNCIA NACIONAL DE ÁGUAS. Atlas Brasil - Abastecimento Urbano de Água. Brasília, DF: ANA, 2010.), 39% of the municipalities depend exclusively on this water resource. Groundwater can be strategic in terms of adaptation to surface water scarcity, therefore understanding its vulnerability to climate change is crucial (JIMÉNEZ CISNEROS et al., 2014JIMÉNEZ CISNEROS, B. E., et al. Freshwater resources. In: FIELD, C. B., BARROS V. R., DOKKEN D. J.; MACH K. J.; MASTRANDREA M. D.; BILIR T. E.; CHATTERJEE M.; EBI K. L.; ESTRADA Y. O.; GENOVA R. C.; GIRMA B.; KISSEL E. S.; LEVY A. N.; MACCRACKEN S.; MASTRANDREA P. R. and WHITE L. L. (Eds.). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014. p. 229-269.). There were only six studies that considered the impacts of climate change on the groundwater (Figure 3e).

The hydropower sector was the main focus of twenty-nine studies (Figure 3f). Hydroelectricity is approximately 61% of the total installed capacity in the country (ANEEL, 2017ANEEL – AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. Matriz de Energia Elétrica. Available from: <http://www2.aneel.gov.br/aplicacoes/capacidadebrasil/OperacaoCapacidadeBrasil.cfm>. Access on: 13 jul. 2017.
http://www2.aneel.gov.br/aplicacoes/capa...
). The recent water crisis has raised the concern about the impacts of climate change in the Brazilian hydropower sector (ANA, 2014ANA – AGÊNCIA NACIONAL DE ÁGUAS. Encarte Especial sobre a Crise Hídrica. Conjuntura dos recursos hídricos no Brasil. Informe 2014. Brasília, DF: ANA, 2014.). The operation of all power plants in the country is centralized in the National System Operator (Operador Nacional do Sistema - ONS). The distinct climatic regions across the country and conflicts among multiple-uses represents an enormous challenge for the establishment of robust operational plans under climate change (SILVEIRA; SOUZA FILHO; VASCONCELOS JÚNIOR, 2017SILVEIRA, C. S.; SOUZA FILHO, F. A.; VASCONCELOS JÚNIOR, F. C. Streamflow projections for the Brazilian hydropower sector from RCP scenarios. Journal of Water and Climate Change, v. 8, n. 1, p. 114-126, 2017. http://dx.doi.org/10.2166/wcc.2016.052.
http://dx.doi.org/10.2166/wcc.2016.052...
)

Purpose

Forty-eight articles focused on the application of models to assess the impacts of climate change (Figure 4). The evaluation of methods was the main focus in eleven studies, whereas four aimed at model development. The disparity of purpose is consistent with the scientific context. In general, most scientific studies tend to address the application of consolidated methods in different locations and/or circumstances. The evaluation of methods is primordial for the development of robust and consistent impact studies (FLATO; MAROTZKE, 2013FLATO, G.; MAROTZKE, J. Evaluation of Climate Models. In: STOCKER, T. F.; QIN D.; PLATTNER G. K.; TIGNOR M.; ALLEN S. K.; BOSCHUNG J.; NAUELS A.; XIA Y.; BEX V. and MIDGLEY P.M. (Eds.). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge.: Cambridge University Press, 2013. p. 741-866.), but requires more refined investigations. The low number of studies focusing on model development is likely associated with technical and financial limitations. Those model development studies are usually more sophisticated, requiring highly qualified human resources and appropriate infrastructure, e.g., a supercomputer (SHUKLA et al., 2010SHUKLA, J.; PALMER, T. N.; HAGEDORN, R.; HOSKINS, B.; KINTER, J.; MAROTZKE, J.; MILLER, M.; SLINGO, J. Toward a New Generation of World Climate Research and Computing Facilities. Bulletin of the American Meteorological Society, v. 91, n. 10, p. 1407-1412, 2010. http://dx.doi.org/10.1175/2010BAMS2900.1.
http://dx.doi.org/10.1175/2010BAMS2900.1...
).

Figure 4
Quantity of studies by purpose.

Approach applied by the studies

Climate modelling

The MME approach is under limited application in Brazil. Nearly half of the studies (twenty-nine) considered a single GCM (Figure 5). Twelve articles made use of the outputs from 2 GCMs, ten studies considered from 3 to 9 GCMs and four studies adopted from 10 to 19 GCMs. The use of nearly all GCMs available (more than 20) were found in nine studies. The use of several GCM outputs combined with regionalization techniques requires specialized human resources and, in the case of RCMs, a considerable computational infrastructure (WILBY et al., 2009WILBY, R. L.; TRONI, J.; BIOT, Y.; TEDD, L.; HEWITSON, B. C.; SMITH, D. M.; SUTTON, R. T. A review of climate risk information for adaptation and development planning. International Journal of Climatology, v. 29, n. 9, p. 1193-1215, 2009. http://dx.doi.org/10.1002/joc.1839.
http://dx.doi.org/10.1002/joc.1839...
). The higher the quantity of GCMs used, the lower the amount of studies applying RCMs. For large sets of GCM, the most applied techniques are the ESD and the BC. Additionally, RCMs are prone to systematic biases and BC is often applied (CHRISTENSEN et al., 2008CHRISTENSEN, J. H.; BOBERG, F.; CHRISTENSEN, O. B.; LUCAS-PICHER, P. On the need for bias correction of regional climate change projections of temperature and precipitation. Geophysical Research Letters, v. 35, n. 20, p. 30, 2008. http://dx.doi.org/10.1029/2008GL035694.
http://dx.doi.org/10.1029/2008GL035694...
). In the case of Brazil, this approach was considered in fifteen studies.

Figure 5
Quantity of articles by amount of GCMs and regionalization techniques applied. All studies are included.

The higher the variety of regionalization techniques, the more robust the study. Multiple regionalization methods (GCM+RCM+ESD and GCM+RCM+BC+ESD) were found in two studies, but their limitation comes from the low number of GCM outputs used.

The results suggest limitations in the acquisition of GCM data as well as in the access to computational infrastructure to run sophisticated models. We recognize that the acquisition of large amounts of GCM data is not a trivial task. It requires specialized technical support and considerable computational resources. In addition, we noticed gaps in the communication of scientific information. The definition of regionalization techniques is often inaccurate. We also detected differences in the terminology used by climatologists and hydrologists.

We found that different types of climate model products were applied (Figure 6). The CMIP3 GCMs were first launched in 2005 (MEEHL et al., 2007MEEHL, G. A.; COVEY, C.; DELWORTH, T.; LATIF, M.; MCAVANEY, B.; MITCHELL, J. F. B.; STOUFFER, R. J.; TAYLOR, K. E. THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research. Bulletin of the American Meteorological Society, v. 88, n. 9, p. 1383-1394, 2007. http://dx.doi.org/10.1175/BAMS-88-9-1383.
http://dx.doi.org/10.1175/BAMS-88-9-1383...
), but the first application in Brazil is dated from 2008. The increase in the use of CMIP3 was observed only from 2011. The use of the fifth version (CMIP5) was first published three years after its launching in 2012. Since 2015, there has been a replacement of the previous version to the newest one. Some studies considered a Brazilian model developed by the Instituto Nacional de Pesquisas Espaciais (INPE) and the NCEP Reanalysis, but their aim was for model evaluation purposes, not for model application in impact assessments.

Figure 6
Quantity of articles by climate model products per year. All studies are included.

Typology of regionalization techniques

Figure 7 shows that the most applied RCM was the Eta-CPTEC (CHOU et al., 2012CHOU, S. C.; MARENGO, J. A.; LYRA, A. A.; SUEIRO, G.; PESQUERO, J. F.; ALVES, L. M.; KAY, G.; BETTS, R.; CHAGAS, D. J.; GOMES, J. L.; BUSTAMANTE, J. F.; TAVARES, P. Downscaling of South America present climate driven by 4-member HadCM3 runs. Climate Dynamics, v. 38, n. 3–4, p. 635-653, 2012. http://dx.doi.org/10.1007/s00382-011-1002-8.
http://dx.doi.org/10.1007/s00382-011-100...
). Its popularity is attributed to the successful collaboration of the Centro de Previsão do Tempo e Estudos Climáticos (CPTEC/INPE) with other research groups. Seven out of eighteen studies included CPTEC researchers as co-authors. The HadRM3P (MARENGO et al., 2009MARENGO, J. A.; JONES, R.; ALVES, L. M.; VALVERDE, M. C. Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. International Journal of Climatology, v. 29, n. 15, p. 2241-2255, 2009. http://dx.doi.org/10.1002/joc.1863.
http://dx.doi.org/10.1002/joc.1863...
) and RSM-NCEP (JUANG; KANAMITSU, 1994JUANG, H. M. H.; KANAMITSU, M. The NMC Nested Regional Spectral Model. Monthly Weather Review, v. 122, n. 1, p. 3-26, 1994. http://dx.doi.org/10.1175/1520-0493(1994)122<0003:TNNRSM>2.0.CO;2.
http://dx.doi.org/10.1175/1520-0493(1994...
) were applied in five studies each. The HadRM3P together with PROMES-UCLM (CASTRO; FERNÁNDEZ; GAERTNER, 1993CASTRO, M.; FERNÁNDEZ, C.; GAERTNER, M. A. Description of a mesoscale atmospheric numerical model. In: DÍAZ, J. I.; LIONS, J. L. (Eds.). Mathematics, climate and environment. Paris: Masson. p. 230-253, 1993.), RCA-SMHI (SAMUELSSON et al., 2011SAMUELSSON, P.; JONES, C. G.; WILL´EN, U.; ULLERSTIG, A.; GOLLVIK, S.; HANSSON, U.; JANSSON, E.; KJELLSTRO¨M, C.; NIKULIN, G.; WYSER, K. The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus A. Dynamic Meteorology and Oceanography, v. 63, n. 1, p. 4-23, 2011. http://dx.doi.org/10.1111/j.1600-0870.2010.00478.x.
http://dx.doi.org/10.1111/j.1600-0870.20...
) and RegCM3 (GIORGI; MARINUCCI; BATES, 1993GIORGI, F.; MARINUCCI, M. R.; BATES, G. T. Development of a Second-Generation Regional Climate Model (RegCM2). Part I: Boundary-Layer and Radiative Transfer Processes. Monthly Weather Review, v. 121, n. 10, p. 2794-2813, 1993. http://dx.doi.org/10.1175/1520-0493(1993)121<2794:DOASGR>2.0.CO;2.
http://dx.doi.org/10.1175/1520-0493(1993...
), are part of the Coordinated Regional Climate Downscaling Experiment (CORDEX, JACOB et al., 2007JACOB, D.; BÄRRING, L.; CHRISTENSEN, O. B.; CHRISTENSEN, J. H.; CASTRO, M.; DÉQUÉ, M.; GIORGI, F.; HAGEMANN, S.; HIRSCHI, M.; JONES, R.; KJELLSTRÖM, E.; LENDERINK, G.; ROCKEL, B.; SÁNCHEZ, E.; SCHÄR, C.; SENEVIRATNE, S. I.; SOMOT, S.; VAN ULDEN, A.; VAN DEN HURK, B. An inter-comparison of regional climate models for Europe: model performance in present-day climate. Climatic Change, v. 81, n. S1, p. 31-52, 2007. http://dx.doi.org/10.1007/s10584-006-9213-4.
http://dx.doi.org/10.1007/s10584-006-921...
). The initiative aims to provide outputs of downscaling models for impact studies at the regional scale. However, it is not clear whether the application of RCMs is associated with the CORDEX South America’s efforts.

Figure 7
Quantity of studies by regionalization models and techniques. All studies are included.

In terms of ESD, the most adopted method was the Model for the Assessment of Greenhouse-Gas Induced Climate Change/Scenario Generator (MAGICC/SCENGEN; WIGLEY, 2008WIGLEY, T. M. L. MAGICC/SCENGEN 5.3: user manual (version 2). Colorado: National Center for Atmospheric Research (NCAR), 2008.). The projections of global-mean temperature produced by the MAGICC drives the regional climate change scenario generator SCENGEN. This pattern scaling method appears in IPCC reports since 1990 (JEGANATHAN; ANDIMUTHU, 2013JEGANATHAN, A.; ANDIMUTHU, R. Developing climate change scenarios for Tamil Nadu, India using MAGICC/SCENGEN. Theoretical and Applied Climatology, v. 114, n. 3-4, p. 705-714, 2013. http://dx.doi.org/10.1007/s00704-013-0871-7.
http://dx.doi.org/10.1007/s00704-013-087...
) and was applied in four studies in Brazil. The ClimGen (TODD et al., 2011TODD, M. C.; TAYLOR, R. G.; OSBORN, T. J.; KINGSTON, D. G.; ARNELL, N. W.; GOSLING, S. N. Uncertainty in climate change impacts on basin-scale freshwater resources – preface to the special issue: the QUEST-GSI methodology and synthesis of results. Hydrology and Earth System Sciences, v. 15, n. 3, p. 1035-1046, 2011. http://dx.doi.org/10.5194/hess-15-1035-2011.
http://dx.doi.org/10.5194/hess-15-1035-2...
), also a pattern scaling technique, was considered in three studies. Intended for impact assessments in the agriculture, ClimGen was used in Brazil for hydropower, drinking water supply and conservation purposes. The STatistical Analogue Resampling Scheme (STARS, WERNER; GERSTENGARBE, 1997WERNER, P.; GERSTENGARBE, F. Proposal for the development of climate scenarios. Climate Research, v. 8, p. 171-182, 1997. http://dx.doi.org/10.3354/cr008171.
http://dx.doi.org/10.3354/cr008171...
) was applied in three studies as well.

The most applied BC techniques were the DCF and the QM, both in seventeen studies. The DCF is widely applied in hydrological impact assessments (JIMÉNEZ CISNEROS et al., 2014JIMÉNEZ CISNEROS, B. E., et al. Freshwater resources. In: FIELD, C. B., BARROS V. R., DOKKEN D. J.; MACH K. J.; MASTRANDREA M. D.; BILIR T. E.; CHATTERJEE M.; EBI K. L.; ESTRADA Y. O.; GENOVA R. C.; GIRMA B.; KISSEL E. S.; LEVY A. N.; MACCRACKEN S.; MASTRANDREA P. R. and WHITE L. L. (Eds.). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014. p. 229-269.). The method can rapidly provide a broad set of bias adjusted projections, but its simplicity implies to critical limitations, e.g., changes in temporal variability are neglected (FOWLER; BLENKINSOP; TEBALDI, 2007FOWLER, H. J.; BLENKINSOP, S.; TEBALDI, C. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, v. 27, n. 12, p. 1547-1578, 2007. http://dx.doi.org/10.1002/joc.1556.
http://dx.doi.org/10.1002/joc.1556...
). The QM is more sophisticated and has demonstrated a considerable added value in providing corrected projections. When the aim is to adjust the statistical distribution of the data, that is the recommended method. However, the tail of the distribution is often distorted by QM and extreme events can be misrepresented (MARAUN et al., 2010MARAUN, D.; WETTERHALL, F.; IRESON, A. M.; CHANDLER, R. E.; KENDON, E. J.; WIDMANN, M.; BRIENEN, S.; RUST, H. W.; SAUTER, T.; THEMEßL, M.; VENEMA, V. K. C.; CHUN, K. P.; GOODESS, C. M.; JONES, R. G.; ONOF, C.; VRAC, M.; THIELE-EICH, I. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics, v. 48, n. 3, p. RG3003, 2010. http://dx.doi.org/10.1029/2009RG000314.
http://dx.doi.org/10.1029/2009RG000314...
). Additionally, QM does not directly consider time-dependent statistics such as consecutive dry days (ADDOR; SEIBERT, 2014ADDOR, N.; SEIBERT, J. Bias correction for hydrological impact studies - beyond the daily perspective. Hydrological Processes, v. 28, n. 17, p. 4823-4828, 2014. http://dx.doi.org/10.1002/hyp.10238.
http://dx.doi.org/10.1002/hyp.10238...
). The majority of the studies in Brazil using QM are not related to extreme events or time-dependent indices, showing a coherence in the application of the technique. It is important to highlight that most studies used a distinct definition for QM (i.e., ‘transformation of the frequency distribution’, ‘percentile-to-percentile’, ‘correction of probability density function’, ‘correction of probability density function’, ‘adjustment of cumulative distribution functions’ and ‘probability mapping’).

Hydrological Modelling

The Instituto de Pesquisas Hidráulicas (IPH) is the institution in Brazil leading the topic of modelling in water resources. Figure 8 shoes that the Modelo de Grandes Bacias (MGB-IPH, COLLISCHONN et al., 2007COLLISCHONN, W.; ALLASIA, D.; SILVA, B. C.; TUCCI, C. E. M. The MGB-IPH model for large-scale rainfall-runoff modelling. Hydrological Sciences Journal, v. 52, n. 5, p. 878-895, 2007. http://dx.doi.org/10.1623/hysj.52.5.878.
http://dx.doi.org/10.1623/hysj.52.5.878...
) was the most applied hydrological model (ten studies). The Soil Moisture Accounting Procedure (SMAP, LOPES; BRAGA JUNIOR; CONEJO, 1981LOPES, J. E. G.; BRAGA JUNIOR, B. P. F.; CONEJO, J. G. L. A. Simulação hidrológica: aplicações de um modelo simplificado. In: SIMPÓSIO BRASILEIRO DE HIDROLOGIA E RECURSOS HÍDRICOS, 4., 1981, Fortaleza. Anais... Fortaleza: SBRH, 1981. p. 42-62.) was applied in nine studies and the very popular Soil and Water Assessment Tool (SWAT, SANTHI et al., 2006SANTHI, C.; SRINIVASAN, R.; ARNOLD, J. G.; WILLIAMS, J. R. A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas. Environmental Modelling & Software, v. 21, n. 8, p. 1141-1157, 2006. http://dx.doi.org/10.1016/j.envsoft.2005.05.013.
http://dx.doi.org/10.1016/j.envsoft.2005...
) was used in seven studies. Three studies made use of the Modelo Hidrológico Distribuído (MHD-INPE, TOMASELLA et al., 2011TOMASELLA, J.; BORMA, L. S.; MARENGO, J. A.; RODRIGUEZ, D. A.; CUARTAS, L. A.; NOBRE, C.; PRADO, M. C. R. The droughts of 1996-1997 and 2004-2005 in Amazonia: hydrological response in the river main-stem. Hydrological Processes, v. 25, n. 8, p. 1228-1242, 2011. http://dx.doi.org/10.1002/hyp.7889.
http://dx.doi.org/10.1002/hyp.7889...
). Many other models were applied in one or two studies. It is important to highlight the efforts of Pereira, Moraes and Uvo (2014)PEREIRA, F. F.; MORAES, M. A. E.; UVO, C. B. Implementation of a two-way coupled atmospheric-hydrological system for environmental modeling at regional scale. Hydrology Research, v. 45, n. 3, p. 504-514, 2014. http://dx.doi.org/10.2166/nh.2013.335.
http://dx.doi.org/10.2166/nh.2013.335...
, who implemented a two-way coupling, or inline hydrological-atmospheric system, for regional scale modelling. In this case, the Brazilian Regional Atmospheric Modeling System (BRAMS, FREITAS et al., 2009FREITAS, S. R.; LONGO, K. M.; SILVA DIAS, M. A. F.; CHATFIELD, R.; SILVA DIAS, P.; ARTAXO, P.; ANDREAE, M. O.; GRELL, G.; RODRIGUES, L. F.; FAZENDA, A.; PANETTA, J. The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) – Part 1: Model description and evaluation. Atmospheric Chemistry and Physics, v. 9, n. 8, p. 2843-2861, 2009. http://dx.doi.org/10.5194/acp-9-2843-2009.
http://dx.doi.org/10.5194/acp-9-2843-200...
) was coupled to the MGB-IPH. Most studies adopt offline modelling approaches, even though feedback effects can play a substantial role. The coupled regional modelling is physically more consistent than the offline version, but it demands enormous computational capacity and technical knowledge. In addition, crucial aspects leave room for improvement, especially regarding the parameterization schemes. These models are in development phase rather than being applied in impact assessments. Robust and reliable estimates are still unlikely to be obtained (BUTTS et al., 2014BUTTS, M.; DREWS, M.; LARSEN, M. A. D.; LERER, S.; RASMUSSEN, S. H.; GROOSS, J.; OVERGAARD, J.; REFSGAARD, J. C.; CHRISTENSEN, O. B.; CHRISTENSEN, J. H. Embedding complex hydrology in the regional climate system – Dynamic coupling across different modelling domains. Advances in Water Resources, v. 74, p. 166-184, 2014. http://dx.doi.org/10.1016/j.advwatres.2014.09.004.
http://dx.doi.org/10.1016/j.advwatres.20...
). Therefore, the study of PEREIRA; MORAES; UVO (2014)PEREIRA, F. F.; MORAES, M. A. E.; UVO, C. B. Implementation of a two-way coupled atmospheric-hydrological system for environmental modeling at regional scale. Hydrology Research, v. 45, n. 3, p. 504-514, 2014. http://dx.doi.org/10.2166/nh.2013.335.
http://dx.doi.org/10.2166/nh.2013.335...
deserves merit by pioneering the development of a two-way coupling approach in Brazil.

Figure 8
Type of hydrological models used. All studies are included.

Studies addressing ‘model evaluation’

Several studies demonstrated that RCMs significantly improve rainfall estimates (ALVES; CAMPOS; SERVAIN, 2012ALVES, J. M. B.; CAMPOS, J. N. B.; SERVAIN, J. Reservoir management using coupled atmospheric and hydrological models: The Brazilian Semi-Arid Case. Water Resources Management, v. 26, n. 5, p. 1365-1385, 2012. http://dx.doi.org/10.1007/s11269-011-9963-2.
http://dx.doi.org/10.1007/s11269-011-996...
; BLOCK et al., 2009BLOCK, P. J.; SOUZA FILHO, F. A.; SUN, L.; KWON, H. H. A streamflow forecasting framework using multiple climate and hydrological models. Journal of the American Water Resources Association, v. 45, n. 4, p. 828-843, 2009. http://dx.doi.org/10.1111/j.1752-1688.2009.00327.x.
http://dx.doi.org/10.1111/j.1752-1688.20...
; BRAGA et al., 2013BRAGA, A. C. F. M.; SILVA, R. M.; SANTOS, C. A. G.; GALVÃO, C. O.; NOBRE, P. Downscaling of a global climate model for estimation of runoff, sediment yield and dam storage: A case study of Pirapama basin, Brazil. Journal of Hydrology, v. 498, p. 46-58, 2013. http://dx.doi.org/10.1016/j.jhydrol.2013.06.007.
http://dx.doi.org/10.1016/j.jhydrol.2013...
; KRUK; VENDRAME; CHOU, 2013KRUK, N. S.; VENDRAME, Í. F.; CHOU, S. C. Coupling a Mesoscale Atmospheric Model with a Distributed Hydrological Model Applied to a Watershed in Southeast Brazil. Journal of Hydrologic Engineering, v. 18, n. 1, p. 58-65, 2013. http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000606.
http://dx.doi.org/10.1061/(ASCE)HE.1943-...
; KWON et al., 2012KWON, H.-H.; ASSIS DE SOUZA FILHO, F.; BLOCK, P.; SUN, L.; LALL, U.; REIS JUNIOR, D. S. Uncertainty assessment of hydrologic and climate forecast models in Northeastern Brazil. Hydrological Processes, v. 26, n. 25, p. 3875-3885, 2012. http://dx.doi.org/10.1002/hyp.8433.
http://dx.doi.org/10.1002/hyp.8433...
; LIMA; ALVES, 2009LIMA, J. P. R.; ALVES, M. B. Um estudo de downscaling dinâmico de precipitação intrasazonal acoplado a modelo chuva-vazão na bacia hidrográfica alto-médio São Francisco. Revista Brasileira de Meteorologia, v. 24, n. 3, p. 323-338, 2009. http://dx.doi.org/10.1590/S0102-77862009000300006.
http://dx.doi.org/10.1590/S0102-77862009...
; OLIVEIRA; PEDROLLO; CASTRO, 2015aOLIVEIRA, G. G.; PEDROLLO, O. C.; CASTRO, N. M. R. As incertezas associadas às condições climáticas obtidas pelo modelo Eta CPTEC/HadCM3: avaliação comparativa entre os dados simulados e observados de precipitação, evapotranspiração e vazão na bacia hidrográfica do rio Ijuí, Brasil. Revista Brasileira de Meteorologia, v. 30, n. 1, p. 101-121, 2015a. http://dx.doi.org/10.1590/0102-778620140041.
http://dx.doi.org/10.1590/0102-778620140...
, 2015bOLIVEIRA, G. G.; PEDROLLO, O. C.; CASTRO, N. M. R. Stochastic approach to analyzing the uncertainties and possible changes in the availability of water in the future based on scenarios of climate change. Hydrology and Earth System Sciences, v. 19, n. 8, p. 3585-3604, 2015b. http://dx.doi.org/10.5194/hess-19-3585-2015.
http://dx.doi.org/10.5194/hess-19-3585-2...
; PEREIRA; MORAES; UVO, 2014PEREIRA, F. F.; MORAES, M. A. E.; UVO, C. B. Implementation of a two-way coupled atmospheric-hydrological system for environmental modeling at regional scale. Hydrology Research, v. 45, n. 3, p. 504-514, 2014. http://dx.doi.org/10.2166/nh.2013.335.
http://dx.doi.org/10.2166/nh.2013.335...
). That’s also valid when RCM is coupled inline with a hydrological model (PEREIRA; MORAES; UVO, 2014PEREIRA, F. F.; MORAES, M. A. E.; UVO, C. B. Implementation of a two-way coupled atmospheric-hydrological system for environmental modeling at regional scale. Hydrology Research, v. 45, n. 3, p. 504-514, 2014. http://dx.doi.org/10.2166/nh.2013.335.
http://dx.doi.org/10.2166/nh.2013.335...
). The added value of ESDs was confirmed by Coelho et al. (2006)COELHO, C. A. S.; STEPHENSON, D. B.; DOBLAS-REYES, F. J.; BALMASEDA, M.; GUETTER, A.; VAN OLDENBORGH, G. J. A Bayesian approach for multi-model downscaling: Seasonal forecasting of regional rainfall and river flows in South America. Meteorological Applications, v. 13, n. 01, p. 73, 2006. http://dx.doi.org/10.1017/S1350482705002045.
http://dx.doi.org/10.1017/S1350482705002...
and Block et al., (2009)BLOCK, P. J.; SOUZA FILHO, F. A.; SUN, L.; KWON, H. H. A streamflow forecasting framework using multiple climate and hydrological models. Journal of the American Water Resources Association, v. 45, n. 4, p. 828-843, 2009. http://dx.doi.org/10.1111/j.1752-1688.2009.00327.x.
http://dx.doi.org/10.1111/j.1752-1688.20...
, who used Bayesian Approach and Linear Regression with Principal Components respectively. The QM is very useful for adjusting the statistical distribution of the data (ALVES; CAMPOS; SERVAIN, 2012ALVES, J. M. B.; CAMPOS, J. N. B.; SERVAIN, J. Reservoir management using coupled atmospheric and hydrological models: The Brazilian Semi-Arid Case. Water Resources Management, v. 26, n. 5, p. 1365-1385, 2012. http://dx.doi.org/10.1007/s11269-011-9963-2.
http://dx.doi.org/10.1007/s11269-011-996...
; LIMA; ALVES, 2009LIMA, J. P. R.; ALVES, M. B. Um estudo de downscaling dinâmico de precipitação intrasazonal acoplado a modelo chuva-vazão na bacia hidrográfica alto-médio São Francisco. Revista Brasileira de Meteorologia, v. 24, n. 3, p. 323-338, 2009. http://dx.doi.org/10.1590/S0102-77862009000300006.
http://dx.doi.org/10.1590/S0102-77862009...
; TUCCI et al., 2003TUCCI, C. E. M.; CLARKE, R. T.; COLLISCHONN, W.; SILVA DIAS, P. L.; OLIVEIRA, G. S. Long-term flow forecasts based on climate and hydrologic modeling: Uruguay River basin. Water Resources Research, v. 39, n. 7, 2003. http://dx.doi.org/10.1029/2003WR002074.
http://dx.doi.org/10.1029/2003WR002074...
), while the DCF is questionable. When combined with RCM outputs, Braga et al. (2013)BRAGA, A. C. F. M.; SILVA, R. M.; SANTOS, C. A. G.; GALVÃO, C. O.; NOBRE, P. Downscaling of a global climate model for estimation of runoff, sediment yield and dam storage: A case study of Pirapama basin, Brazil. Journal of Hydrology, v. 498, p. 46-58, 2013. http://dx.doi.org/10.1016/j.jhydrol.2013.06.007.
http://dx.doi.org/10.1016/j.jhydrol.2013...
and Oliveira, Pedrollo and Castro (2015a)OLIVEIRA, G. G.; PEDROLLO, O. C.; CASTRO, N. M. R. As incertezas associadas às condições climáticas obtidas pelo modelo Eta CPTEC/HadCM3: avaliação comparativa entre os dados simulados e observados de precipitação, evapotranspiração e vazão na bacia hidrográfica do rio Ijuí, Brasil. Revista Brasileira de Meteorologia, v. 30, n. 1, p. 101-121, 2015a. http://dx.doi.org/10.1590/0102-778620140041.
http://dx.doi.org/10.1590/0102-778620140...
demonstrated advantages in applying DCF for monthly scale. On the other hand, when intended for high resolution studies, Kruk, Vendrame and Chou (2013)KRUK, N. S.; VENDRAME, Í. F.; CHOU, S. C. Coupling a Mesoscale Atmospheric Model with a Distributed Hydrological Model Applied to a Watershed in Southeast Brazil. Journal of Hydrologic Engineering, v. 18, n. 1, p. 58-65, 2013. http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000606.
http://dx.doi.org/10.1061/(ASCE)HE.1943-...
concluded that the technique is useless. Oliveira, Pedrollo and Castro (2015a)OLIVEIRA, G. G.; PEDROLLO, O. C.; CASTRO, N. M. R. As incertezas associadas às condições climáticas obtidas pelo modelo Eta CPTEC/HadCM3: avaliação comparativa entre os dados simulados e observados de precipitação, evapotranspiração e vazão na bacia hidrográfica do rio Ijuí, Brasil. Revista Brasileira de Meteorologia, v. 30, n. 1, p. 101-121, 2015a. http://dx.doi.org/10.1590/0102-778620140041.
http://dx.doi.org/10.1590/0102-778620140...
shows no evidence of the superiority of one bias correction technique over the others.

Some authors (BRAGA et al., 2013BRAGA, A. C. F. M.; SILVA, R. M.; SANTOS, C. A. G.; GALVÃO, C. O.; NOBRE, P. Downscaling of a global climate model for estimation of runoff, sediment yield and dam storage: A case study of Pirapama basin, Brazil. Journal of Hydrology, v. 498, p. 46-58, 2013. http://dx.doi.org/10.1016/j.jhydrol.2013.06.007.
http://dx.doi.org/10.1016/j.jhydrol.2013...
; TUCCI et al., 2003TUCCI, C. E. M.; CLARKE, R. T.; COLLISCHONN, W.; SILVA DIAS, P. L.; OLIVEIRA, G. S. Long-term flow forecasts based on climate and hydrologic modeling: Uruguay River basin. Water Resources Research, v. 39, n. 7, 2003. http://dx.doi.org/10.1029/2003WR002074.
http://dx.doi.org/10.1029/2003WR002074...
) suggest that the information extracted from GCMs without regionalization may be useful for impact assessments. The superiority of the MME approach is unquestionable. Block et al. (2009)BLOCK, P. J.; SOUZA FILHO, F. A.; SUN, L.; KWON, H. H. A streamflow forecasting framework using multiple climate and hydrological models. Journal of the American Water Resources Association, v. 45, n. 4, p. 828-843, 2009. http://dx.doi.org/10.1111/j.1752-1688.2009.00327.x.
http://dx.doi.org/10.1111/j.1752-1688.20...
demonstrated the benefits of MME, not only in the quantification of uncertainties, but also in error compensation. Another important aspect is the propagation of uncertainties along the modelling chain. Block et al. (2009)BLOCK, P. J.; SOUZA FILHO, F. A.; SUN, L.; KWON, H. H. A streamflow forecasting framework using multiple climate and hydrological models. Journal of the American Water Resources Association, v. 45, n. 4, p. 828-843, 2009. http://dx.doi.org/10.1111/j.1752-1688.2009.00327.x.
http://dx.doi.org/10.1111/j.1752-1688.20...
states that uncertainty analysis “remains a formidable challenge”. The uncertainties associated with climate modelling and regionalization are usually thought to be greater than that of hydrological modelling (KWON et al., 2012KWON, H.-H.; ASSIS DE SOUZA FILHO, F.; BLOCK, P.; SUN, L.; LALL, U.; REIS JUNIOR, D. S. Uncertainty assessment of hydrologic and climate forecast models in Northeastern Brazil. Hydrological Processes, v. 26, n. 25, p. 3875-3885, 2012. http://dx.doi.org/10.1002/hyp.8433.
http://dx.doi.org/10.1002/hyp.8433...
). Block et al. (2009)BLOCK, P. J.; SOUZA FILHO, F. A.; SUN, L.; KWON, H. H. A streamflow forecasting framework using multiple climate and hydrological models. Journal of the American Water Resources Association, v. 45, n. 4, p. 828-843, 2009. http://dx.doi.org/10.1111/j.1752-1688.2009.00327.x.
http://dx.doi.org/10.1111/j.1752-1688.20...
highlight the application of weighting methods to generate probabilistic estimates of GCM outputs. Kwon et al. (2012)KWON, H.-H.; ASSIS DE SOUZA FILHO, F.; BLOCK, P.; SUN, L.; LALL, U.; REIS JUNIOR, D. S. Uncertainty assessment of hydrologic and climate forecast models in Northeastern Brazil. Hydrological Processes, v. 26, n. 25, p. 3875-3885, 2012. http://dx.doi.org/10.1002/hyp.8433.
http://dx.doi.org/10.1002/hyp.8433...
and Tucci et al. (2003)TUCCI, C. E. M.; CLARKE, R. T.; COLLISCHONN, W.; SILVA DIAS, P. L.; OLIVEIRA, G. S. Long-term flow forecasts based on climate and hydrologic modeling: Uruguay River basin. Water Resources Research, v. 39, n. 7, 2003. http://dx.doi.org/10.1029/2003WR002074.
http://dx.doi.org/10.1029/2003WR002074...
emphasize the need for a super-ensemble approach in order to quantify the uncertainties related to the structure of all model types in the modelling chain.

Studies addressing ‘model application’

Studies addressing ‘model application’ in the context of impacts assessments were evaluated considering their level of comprehensiveness (see section ‘Level of comprehensiveness of the studies’). Under this framework, the theoretical foundation is usually fairly robust or robust, with thirty-four studies adopting the regionalization procedure consistent with the state-of-the-art (Figure 9a). Drawbacks are clear when comes to data. More than a half of the articles (twenty-seven studies) adopted up to two GCMs. Only eleven studies made use of a considerable quantity of GCM outputs (≥ 10 members). In terms of modelling, the great majority of the studies (thirty-eight articles) are at medium level of comprehensiveness; whereas two studies are classified as limited. The GCM versions used in the studies are consistent with the available datasets. Thirty-three studies used outputs from the CMIP3 database and eleven studies applied the last version (Figure 9b). Concerning the RCM, ESD and HM, the majority of the studies used models that are consistent with the recommendations of the scientific community. Eight studies are classified as fairly robust in terms of modelling procedure, mainly due to the application of more than one model in the regionalization and/or hydrologic modelling procedure. In terms of BC, eleven documents are considered very limited due to the application of DCF, a technique which is under low reliability (MARAUN; WIDMANN, 2018MARAUN, D.; WIDMANN, M. Statistical Downscaling and Bias Correction for Climate Research. 1. ed. Cambridge: Cambridge University Press, 2018. http://dx.doi.org/10.1017/9781107588783
http://dx.doi.org/10.1017/9781107588783...
). Ten studies are limited due the application of QM and one study is at medium level due to the application of two BC methods combined. The aspects of comprehensiveness reveal important scientific issues in dealing with the impacts of climate change on the Brazilian water resources. Although strongly recommended, the MME approach is under limited application.

Figure 9
Classification of: a) aspects of comprehensiveness and b) the sub-aspects of modelling. Only ‘model application’ studies are included.

CONCLUSIONS

With 63 scientific articles, we identified that great attention was given to the integration of climate models into hydrological models in Brazil in this decade. The majority of the studies are about the Paraná hydrographic region and focus on hydropower and drinking water supply sectors. The second region of greatest interest is the Atlântico Nordeste Oriental, which has the drinking water supply as the most relevant sector. Despite the high population density and economic importance, the Atlântico Sudeste region is under represented.

The hydropower sector is of highest interest. Nearly two thirds of the electricity production in the country depends on the water resources. Including information about the potential impacts of climate change represents an enormous challenge for the establishment of robust operational plans and resilient designs. The second sector under highest interest is the drinking water supply. Issues are mainly related to the quantity of water in the semi-arid region and in urban areas. Despite the great socioeconomic relevance, the flood risk reduction was addressed in very few studies.

The theoretical basis and the modelling procedure adopted in the studies are usually consistent with the state-of-the-art. Drawbacks are clear when it comes to the application of a large ensemble of GCMs. A realistic reason for that is the lack of technical capacity and limited access to computational infrastructure to assimilate and postprocess GCM data. There is also a demand to equalize the understanding of the concepts and terms used among climatologists, hydrologists and stakeholders. General lexicon and guidelines are recommended to match the understanding of the concepts and the terms used in the integration of climate models into hydrological models.

The comprehensiveness of studies can be improved by adding more models and, perhaps, using more sophisticated BC techniques. However, we strongly recommend that the modelling procedure adopted should be user-tailored. In other words, the evaluation and the application of models should be based on the needs of the end-users and process-informed rather than looking for e.g., the highest resolution (MARAUN et al., 2017MARAUN, D.; SHEPHERD, T. G.; WIDMANN, M.; ZAPPA, G.; WALTON, D.; GUTIÉRREZ, J. M.; HAGEMANN, S.; RICHTER, I.; SOARES, P. M. M.; HALL, A.; MEARNS, L. O. Towards process-informed bias correction of climate change simulations. Nature Climate Change, v. 7, n. 11, p. 664-773, 2017. http://dx.doi.org/10.1038/nclimate3418.
http://dx.doi.org/10.1038/nclimate3418...
). The evaluation of the degree of comprehensiveness proved to be a valuable analysis to guide actions to improve the subject in Brazil. We suggest to increase accessibility to GCM databases and enhance capacity on postprocessing of data. One way to bridge this gap is to build capacity across research institutions and universities. Given the challenges that Brazilian science is facing, we recommend the synchronization of efforts among research institutions. Research should prioritize regions and sectors according to e.g., their level of vulnerability and observed ongoing changes. That represents an outstanding opportunity for initiatives such as the Brazilian Network on Global Climate Change Research (Rede Clima) and, consequently, for a more effective use of climate change impacts information by decision-makers in Brazil.

Supplementary Material

Supplementary material accompanies this paper.

Table S1. Articles list database.

This material is available as part of the online article from http://www.scielo.br/rbrh.

ACKNOWLEDGMENTS

We acknowledge the Brazilian National Council for Scientific and Technological Development (CNPq) for funding this study (Grant Number 150768/2017-6 and 159528/2018-6)

REFERENCES

  • ABRAMOPOULOS, F.; ROSENZWEIG, C.; CHOUDHURY, B. Improved Ground Hydrology Calculations for Global Climate Models (GCMs): Soil Water Movement and Evapotranspiration. Journal of Climate, v. 1, n. 9, p. 921-941, 1988. http://dx.doi.org/10.1175/1520-0442(1988)001<0921:IGHCFG>2.0.CO;2
    » http://dx.doi.org/10.1175/1520-0442(1988)001<0921:IGHCFG>2.0.CO;2
  • ADAM, K. N.; COLLISCHONN, W. Análise dos impactos de mudanças climáticas nos regimes de precipitação e vazão na bacia hidrográfica do rio Ibicuí. Revista Brasileira de Recursos Hídricos, v. 18, n. 3, p. 69-79, 2013. http://dx.doi.org/10.21168/rbrh.v18n3.p69-79
    » http://dx.doi.org/10.21168/rbrh.v18n3.p69-79
  • ADAM, K. N.; FAN, F. M.; PONTES, P. R.; BRAVO, J. M.; COLLISCHONN, W. Mudanças climáticas e vazões extremas na Bacia do Rio Paraná. Revista Brasileira de Recursos Hídricos, v. 20, n. 4, p. 999-1007, 2015. http://dx.doi.org/10.21168/rbrh.v20n4.p999-1007
    » http://dx.doi.org/10.21168/rbrh.v20n4.p999-1007
  • ADDOR, N.; SEIBERT, J. Bias correction for hydrological impact studies - beyond the daily perspective. Hydrological Processes, v. 28, n. 17, p. 4823-4828, 2014. http://dx.doi.org/10.1002/hyp.10238
    » http://dx.doi.org/10.1002/hyp.10238
  • ALVARENGA, L. A.; MELLO, C. R.; COLOMBO, A.; CUARTAS, L. A.; CHOU, S. C. Hydrological responses to climate changes in a headwater watershed. Ciência e Agrotecnologia, v. 40, n. 6, p. 647-657, 2016. http://dx.doi.org/10.1590/1413-70542016406027716
    » http://dx.doi.org/10.1590/1413-70542016406027716
  • ALVES, J. M. B.; CAMPOS, J. N. B.; SERVAIN, J. Reservoir management using coupled atmospheric and hydrological models: The Brazilian Semi-Arid Case. Water Resources Management, v. 26, n. 5, p. 1365-1385, 2012. http://dx.doi.org/10.1007/s11269-011-9963-2
    » http://dx.doi.org/10.1007/s11269-011-9963-2
  • ANA – AGÊNCIA NACIONAL DE ÁGUAS. Atlas Brasil - Abastecimento Urbano de Água Brasília, DF: ANA, 2010.
  • ANA – AGÊNCIA NACIONAL DE ÁGUAS. Conjuntura dos recursos hídricos no Brasil: 2013 Brasília, DF: ANA, 2013.
  • ANA – AGÊNCIA NACIONAL DE ÁGUAS. Encarte Especial sobre a Crise Hídrica. Conjuntura dos recursos hídricos no Brasil. Informe 2014 Brasília, DF: ANA, 2014.
  • ANA – AGÊNCIA NACIONAL DE ÁGUAS. ProjetoLEGADO: Uma agenda para aperfeiçoamento dos marcos constitucional, legal e infralegal da gestão de águas no Brasil. Preparação para o 8o fórum mundial da água Brasília, DF: ANA, 2017. Available in: <http://arquivos.ana.gov.br/projetos/legado/DocumentoBase-VersaoZero.4_20171110.pdf>.
    » http://arquivos.ana.gov.br/projetos/legado/DocumentoBase-VersaoZero.4_20171110.pdf
  • ANEEL – AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. Matriz de Energia Elétrica Available from: <http://www2.aneel.gov.br/aplicacoes/capacidadebrasil/OperacaoCapacidadeBrasil.cfm>. Access on: 13 jul. 2017.
    » http://www2.aneel.gov.br/aplicacoes/capacidadebrasil/OperacaoCapacidadeBrasil.cfm
  • ARAÚJO, J. C.; DÖLL, P.; GÜNTNER, A.; KROL, M.; ABREU, C. B. R.; HAUSCHILD, M.; MENDIONDO, E. M. Water Scarcity Under Scenarios for Global Climate Change and Regional Development in Semiarid Northeastern Brazil. Water International, v. 29, n. 2, p. 209-220, 2004. http://dx.doi.org/10.1080/02508060408691770
    » http://dx.doi.org/10.1080/02508060408691770
  • ARROIO JUNIOR, P.; MAUAD, F. Simulação dos Impactos das mudanças climáticas na vazão da Bacia do Ribeirão do Feijão - SP. Revista Brasileira de Recursos Hídricos, v. 20, n. 3, p. 741-751, 2015. http://dx.doi.org/10.21168/rbrh.v20n3.p741-751
    » http://dx.doi.org/10.21168/rbrh.v20n3.p741-751
  • BLÁZQUEZ, J.; NUÑEZ, M. N. Analysis of uncertainties in future climate projections for South America: comparison of WCRP-CMIP3 and WCRP-CMIP5 models. Climate Dynamics, v. 41, n. 3-4, p. 1039-1056, 2013. http://dx.doi.org/10.1007/s00382-012-1489-7
    » http://dx.doi.org/10.1007/s00382-012-1489-7
  • BLOCK, P. J.; SOUZA FILHO, F. A.; SUN, L.; KWON, H. H. A streamflow forecasting framework using multiple climate and hydrological models. Journal of the American Water Resources Association, v. 45, n. 4, p. 828-843, 2009. http://dx.doi.org/10.1111/j.1752-1688.2009.00327.x
    » http://dx.doi.org/10.1111/j.1752-1688.2009.00327.x
  • BORGES, P. A.; CHAFFE, P. B. Towards a comprehensive characterization of evidence in synthesis assessments: climate change impacts on the Brazilian water resources. Climatic Change, v. 153, p. 1-21, 2019. https://dx.doi.org/10.1007/s10584-019-02430-9
    » https://dx.doi.org/10.1007/s10584-019-02430-9
  • BRAGA, A. C. F. M.; SILVA, R. M.; SANTOS, C. A. G.; GALVÃO, C. O.; NOBRE, P. Downscaling of a global climate model for estimation of runoff, sediment yield and dam storage: A case study of Pirapama basin, Brazil. Journal of Hydrology, v. 498, p. 46-58, 2013. http://dx.doi.org/10.1016/j.jhydrol.2013.06.007
    » http://dx.doi.org/10.1016/j.jhydrol.2013.06.007
  • BRAVO, J. M.; COLLISCHONN, W.; PAZ, A. R.; ALLASIA, D.; DOMECQ, F. Impact of projected climate change on hydrologic regime of the Upper Paraguay River basin. Climatic Change, v. 127, n. 1, p. 27-41, 2014. http://dx.doi.org/10.1007/s10584-013-0816-2
    » http://dx.doi.org/10.1007/s10584-013-0816-2
  • BRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica do Paraná Brasília, DF: MMA, 2006a. Available from: <www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011023747.pdf>. Access on: 10 ago. 2017.
  • BRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica Atlântico Nordeste Oriental Brasília: MMA, 2006b. Available from: <www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011024510.pdf>. Access on: 10 ago. 2017.
  • BRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica Amazônica Brasília: MMA, 2006c. Available from: <www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011024915.pdf>. Access on: 10 ago. 2017.
  • BRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica do Tocantins-Araguaia Brasília: MMA, 2006d. Available from: <www.mma.gov.br/estruturas/161/_publicacao/161_publicacao02032011035943.pdf>. Access on: 10 ago. 2017.
  • BRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica do São Francisco Brasília: MMA, 2006e. Available from: <www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011023538.pdf>. Access on: 10 ago. 2017.
  • BRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica do Uruguai Brasília: MMA, 2006f. Available from: <www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011023025.pdf>. Access on: 10 ago. 2017.
  • BRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica Atlântico Leste Brasília: MMA, 2006g. Available from: <www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011024710.pdf>. Access on: 10 ago. 2017.
  • BRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica Atlântico Sul Brasília: MMA, 2006h. Available from: <www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011024106.pdf>. Access on: 10 ago. 2017.
  • BRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica do Paraguai Brasília: MMA, 2006i. Available from: <http://www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011023853.pdf>. Access on: 10 ago. 2017.
    » http://www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011023853.pdf
  • BRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica Atlântico Sudeste Brasília: MMA, 2006j. Available from: <www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011024223.pdf>. Access on: 10 ago. 2017.
  • BRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica Parnaíba Brasília: MMA, 2006k. Available from: <http://www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011023605.pdf>. Access on: 10 ago. 2017.
    » http://www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011023605.pdf
  • BRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. Caderno da Região Hidrográfica Atlântico Nordeste Ocidental Brasília: MMA, 2006l. Available from: <http://www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011024629.pdf>. Access on: 10 ago. 2017.
    » http://www.mma.gov.br/estruturas/161/_publicacao/161_publicacao03032011024629.pdf
  • BRASIL. Ministério do Meio Ambiente. Secretaria de Recursos Hídricos. National Adaptation Plan to Climate Change: volume I: general strategy Brasília: MMA, 2016. Available from: <http://www.mma.gov.br/images/arquivo/80182/PNA_Volume%20I_EN.pdf>. Access on: 10 ago. 2017.
    » http://www.mma.gov.br/images/arquivo/80182/PNA_Volume%20I_EN.pdf
  • BUTTS, M.; DREWS, M.; LARSEN, M. A. D.; LERER, S.; RASMUSSEN, S. H.; GROOSS, J.; OVERGAARD, J.; REFSGAARD, J. C.; CHRISTENSEN, O. B.; CHRISTENSEN, J. H. Embedding complex hydrology in the regional climate system – Dynamic coupling across different modelling domains. Advances in Water Resources, v. 74, p. 166-184, 2014. http://dx.doi.org/10.1016/j.advwatres.2014.09.004
    » http://dx.doi.org/10.1016/j.advwatres.2014.09.004
  • CASTRO, M.; FERNÁNDEZ, C.; GAERTNER, M. A. Description of a mesoscale atmospheric numerical model. In: DÍAZ, J. I.; LIONS, J. L. (Eds.). Mathematics, climate and environment Paris: Masson. p. 230-253, 1993.
  • CEPED UFSC – CENTRO UNIVERSITÁRIO DE ESTUDOS E PESQUISAS SOBRE DESASTRES. UNIVERSIDADE FEDERAL DE SANTA CATARINA. Atlas brasileiro de desastres naturais 1991 a 2012: volume Brasil. Florianópolis: CEPED UFSC, 2013. Available in: <https://s2id.mi.gov.br/paginas/atlas/>. Accessed on: 12 jun. 2017.
    » https://s2id.mi.gov.br/paginas/atlas/
  • CEPED UFSC – CENTRO UNIVERSITÁRIO DE ESTUDOS E PESQUISAS SOBRE DESASTRES. UNIVERSIDADE FEDERAL DE SANTA CATARINA; WORLD BANK. Relatório de danos materiais e prejuízos decorrentes de desastres naturais no Brasil: 1995 - 2014 Florianópolis: CEPED UFSC; World Bank, 2016. Available from: <http://www.ceped.ufsc.br/wp-content/uploads/2017/01/111703-WP-CEPEDRelatoriosdeDanoslayout-PUBLIC-PORTUGUESE-ABSTRACT-SENT.pdf>. Access on: 12 jun. 2017.
    » http://www.ceped.ufsc.br/wp-content/uploads/2017/01/111703-WP-CEPEDRelatoriosdeDanoslayout-PUBLIC-PORTUGUESE-ABSTRACT-SENT.pdf
  • CHAGAS, V. B. P.; CHAFFE, P. L. B. The Role of Land Cover in the Propagation of Rainfall Into Streamflow Trends. Water Resources Research, v. 54, n. 9, p. 5986-6004, 2018. http://dx.doi.org/10.1029/2018WR022947
    » http://dx.doi.org/10.1029/2018WR022947
  • CHOU, S. C.; MARENGO, J. A.; LYRA, A. A.; SUEIRO, G.; PESQUERO, J. F.; ALVES, L. M.; KAY, G.; BETTS, R.; CHAGAS, D. J.; GOMES, J. L.; BUSTAMANTE, J. F.; TAVARES, P. Downscaling of South America present climate driven by 4-member HadCM3 runs. Climate Dynamics, v. 38, n. 3–4, p. 635-653, 2012. http://dx.doi.org/10.1007/s00382-011-1002-8
    » http://dx.doi.org/10.1007/s00382-011-1002-8
  • CHRISTENSEN, J. H.; BOBERG, F.; CHRISTENSEN, O. B.; LUCAS-PICHER, P. On the need for bias correction of regional climate change projections of temperature and precipitation. Geophysical Research Letters, v. 35, n. 20, p. 30, 2008. http://dx.doi.org/10.1029/2008GL035694
    » http://dx.doi.org/10.1029/2008GL035694
  • COELHO, C. A. S.; STEPHENSON, D. B.; DOBLAS-REYES, F. J.; BALMASEDA, M.; GUETTER, A.; VAN OLDENBORGH, G. J. A Bayesian approach for multi-model downscaling: Seasonal forecasting of regional rainfall and river flows in South America. Meteorological Applications, v. 13, n. 01, p. 73, 2006. http://dx.doi.org/10.1017/S1350482705002045
    » http://dx.doi.org/10.1017/S1350482705002045
  • COELHO, C. A. S.; DE OLIVEIRA, C. P.; AMBRIZZI, T.; REBOITA, M. S.; CARPENEDO, C. B.; CAMPOS, J. L. P. S.; TOMAZIELLO, A. C. N.; PAMPUCH, L. A.; CUSTÓDIO, M. S.; DUTRA, L. M. M.; DA ROCHA, R. P.; REHBEIN, A. The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections. Climate Dynamics, v. 46, n. 11-12, p. 3737-3752, 2016. http://dx.doi.org/10.1007/s00382-015-2800-1
    » http://dx.doi.org/10.1007/s00382-015-2800-1
  • COLLISCHONN, W.; ALLASIA, D.; SILVA, B. C.; TUCCI, C. E. M. The MGB-IPH model for large-scale rainfall-runoff modelling. Hydrological Sciences Journal, v. 52, n. 5, p. 878-895, 2007. http://dx.doi.org/10.1623/hysj.52.5.878
    » http://dx.doi.org/10.1623/hysj.52.5.878
  • COOK, B.; ZENG, N.; YOON, J.-H. Will Amazonia Dry Out? Magnitude and causes of change from IPCC Climate Model Projections. Earth Interactions, v. 16, n. 3, p. 1-27, 2012. http://dx.doi.org/10.1175/2011EI398.1
    » http://dx.doi.org/10.1175/2011EI398.1
  • DE OLIVEIRA, V. A.; MELLO, C. R.; VIOLA, M. R.; SRINIVASAN, R. Assessment of climate change impacts on streamflow and hydropower potential in the headwater region of the Grande river basin, Southeastern Brazil: CLIMATE CHANGE IMPACTS ON STREAMFLOW AND HYDROPOWER POTENTIAL. International Journal of Climatology, v. 37, n. 15, p. 5005-5023, 2017. http://dx.doi.org/10.1002/joc.5138
    » http://dx.doi.org/10.1002/joc.5138
  • DE QUEIROZ, A. R.; MARANGON LIMA, L. M.; MARANGON LIMA, J. W.; DA SILVA, B. C.; SCIANNI, L. A. Climate change impacts in the energy supply of the Brazilian hydro-dominant power system. Renewable Energy, v. 99, p. 379-389, 2016. http://dx.doi.org/10.1016/j.renene.2016.07.022
    » http://dx.doi.org/10.1016/j.renene.2016.07.022
  • EHRET, U.; ZEHE, E.; WULFMEYER, V.; WARRACH-SAGI, K.; LIEBERT, J. Should we apply bias correction to global and regional climate model. Hydrology and Earth System Sciences, v. 16, n. 9, p. 3391-3404, 2012. http://dx.doi.org/10.5194/hess-16-3391-2012
    » http://dx.doi.org/10.5194/hess-16-3391-2012
  • FERNANDES, R. O.; SILVEIRA, C. S.; STUDART, T. M. C.; SOUZA FILHO, F. A. Reservoir yield intercomparison of large dams in Jaguaribe Basin-CE in climate change scenarios. Revista Brasileira de Recursos Hídricos, v. 22, n. 11, 2017. http://dx.doi.org/10.1590/2318-0331.011716033
    » http://dx.doi.org/10.1590/2318-0331.011716033
  • FILL, H. D.; MINE, M. R. M.; FERNANDES, C. V. S.; BESSA, M. R. Impact of climate change on hydropower production within the La Plata Basin. International Journal of River Basin Management, v. 11, n. 4, p. 449-462, 2013. http://dx.doi.org/10.1080/15715124.2013.865638
    » http://dx.doi.org/10.1080/15715124.2013.865638
  • FLATO, G.; MAROTZKE, J. Evaluation of Climate Models. In: STOCKER, T. F.; QIN D.; PLATTNER G. K.; TIGNOR M.; ALLEN S. K.; BOSCHUNG J.; NAUELS A.; XIA Y.; BEX V. and MIDGLEY P.M. (Eds.). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge.: Cambridge University Press, 2013. p. 741-866.
  • FOWLER, H. J.; BLENKINSOP, S.; TEBALDI, C. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, v. 27, n. 12, p. 1547-1578, 2007. http://dx.doi.org/10.1002/joc.1556
    » http://dx.doi.org/10.1002/joc.1556
  • FREITAS, S. R.; LONGO, K. M.; SILVA DIAS, M. A. F.; CHATFIELD, R.; SILVA DIAS, P.; ARTAXO, P.; ANDREAE, M. O.; GRELL, G.; RODRIGUES, L. F.; FAZENDA, A.; PANETTA, J. The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) – Part 1: Model description and evaluation. Atmospheric Chemistry and Physics, v. 9, n. 8, p. 2843-2861, 2009. http://dx.doi.org/10.5194/acp-9-2843-2009
    » http://dx.doi.org/10.5194/acp-9-2843-2009
  • GIORGI, F.; MARINUCCI, M. R.; BATES, G. T. Development of a Second-Generation Regional Climate Model (RegCM2). Part I: Boundary-Layer and Radiative Transfer Processes. Monthly Weather Review, v. 121, n. 10, p. 2794-2813, 1993. http://dx.doi.org/10.1175/1520-0493(1993)121<2794:DOASGR>2.0.CO;2
    » http://dx.doi.org/10.1175/1520-0493(1993)121<2794:DOASGR>2.0.CO;2
  • GONDIM, R. S.; DE CASTRO, M. A.; TEIXEIRA, A. S.; EVANGELISTA, S. R. M. Impactos das mudanças climáticas na demanda de irrigação da bananeira na Bacia do Jaguaribe. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 15, n. 6, p. 594-600, 2011. http://dx.doi.org/10.1590/S1415-43662011000600009
    » http://dx.doi.org/10.1590/S1415-43662011000600009
  • GONDIM, R.; SILVEIRA, C.; SOUZA FILHO, F.; VASCONCELOS, F.; CID, D. Climate change impacts on water demand and availability using CMIP5 models in the Jaguaribe basin, semi-arid Brazil. Environmental Earth Sciences, v. 77, n. 15, p. 550, 2018. http://dx.doi.org/10.1007/s12665-018-7723-9
    » http://dx.doi.org/10.1007/s12665-018-7723-9
  • GOSLING, S. N.; TAYLOR, R. G.; ARNELL, N. W.; TODD, M. C. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models. Hydrology and Earth System Sciences, v. 15, n. 1, p. 279-294, 2011. http://dx.doi.org/10.5194/hess-15-279-2011
    » http://dx.doi.org/10.5194/hess-15-279-2011
  • GUIMBERTEAU, M.; CIAIS, P.; DUCHARNE, A.; BOISIER, J. P.; DUTRA AGUIAR, A. P.; BIEMANS, H.; DE DEURWAERDER, H.; GALBRAITH, D.; KRUIJT, B.; LANGERWISCH, F.; POVEDA, G.; RAMMIG, A.; RODRIGUEZ, D. A.; TEJADA, G.; THONICKE, K.; VON RANDOW, C.; VON RANDOW, R. C. S.; ZHANG, K.; VERBEECK, H. Impacts of future deforestation and climate change on the hydrology of the Amazon Basin: a multi-model analysis with a new set of land-cover change scenarios. Hydrology and Earth System Sciences, v. 21, n. 3, p. 1455-1475, 2017. http://dx.doi.org/10.5194/hess-21-1455-2017
    » http://dx.doi.org/10.5194/hess-21-1455-2017
  • GULIZIA, C.; CAMILLONI, I. Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. International Journal of Climatology, v. 35, n. 4, p. 583-595, 2015. http://dx.doi.org/10.1002/joc.4005
    » http://dx.doi.org/10.1002/joc.4005
  • HARZING, A.-W.; ALAKANGAS, S. Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison. Scientometrics, v. 106, n. 2, p. 787-804, 2016. http://dx.doi.org/10.1007/s11192-015-1798-9
    » http://dx.doi.org/10.1007/s11192-015-1798-9
  • HIRATA, R.; CONICELLI, B. P. Groundwater resources in Brazil: a review of possible impacts caused by climate change. Anais da Academia Brasileira de Ciências, v. 84, n. 2, p. 297-312, 2012. http://dx.doi.org/10.1590/S0001-37652012005000037
    » http://dx.doi.org/10.1590/S0001-37652012005000037
  • HO, J. T.; THOMPSON, J. R.; BRIERLEY, C. Projections of hydrology in the Tocantins-Araguaia Basin, Brazil: uncertainty assessment using the CMIP5 ensemble. Hydrological Sciences Journal, v. 61, n. 3, p. 551-567, 2016. http://dx.doi.org/10.1080/02626667.2015.1057513
    » http://dx.doi.org/10.1080/02626667.2015.1057513
  • IPCC – INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Managing the risks of extreme events and disasters to advance climate change adaption: special report of the Intergovernmental Panel on Climate Change New York: Cambridge University Press, 2012.
  • JACOB, D.; BÄRRING, L.; CHRISTENSEN, O. B.; CHRISTENSEN, J. H.; CASTRO, M.; DÉQUÉ, M.; GIORGI, F.; HAGEMANN, S.; HIRSCHI, M.; JONES, R.; KJELLSTRÖM, E.; LENDERINK, G.; ROCKEL, B.; SÁNCHEZ, E.; SCHÄR, C.; SENEVIRATNE, S. I.; SOMOT, S.; VAN ULDEN, A.; VAN DEN HURK, B. An inter-comparison of regional climate models for Europe: model performance in present-day climate. Climatic Change, v. 81, n. S1, p. 31-52, 2007. http://dx.doi.org/10.1007/s10584-006-9213-4
    » http://dx.doi.org/10.1007/s10584-006-9213-4
  • JEGANATHAN, A.; ANDIMUTHU, R. Developing climate change scenarios for Tamil Nadu, India using MAGICC/SCENGEN. Theoretical and Applied Climatology, v. 114, n. 3-4, p. 705-714, 2013. http://dx.doi.org/10.1007/s00704-013-0871-7
    » http://dx.doi.org/10.1007/s00704-013-0871-7
  • JIMÉNEZ CISNEROS, B. E., et al. Freshwater resources. In: FIELD, C. B., BARROS V. R., DOKKEN D. J.; MACH K. J.; MASTRANDREA M. D.; BILIR T. E.; CHATTERJEE M.; EBI K. L.; ESTRADA Y. O.; GENOVA R. C.; GIRMA B.; KISSEL E. S.; LEVY A. N.; MACCRACKEN S.; MASTRANDREA P. R. and WHITE L. L. (Eds.). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge: Cambridge University Press, 2014. p. 229-269.
  • JUANG, H. M. H.; KANAMITSU, M. The NMC Nested Regional Spectral Model. Monthly Weather Review, v. 122, n. 1, p. 3-26, 1994. http://dx.doi.org/10.1175/1520-0493(1994)122<0003:TNNRSM>2.0.CO;2
    » http://dx.doi.org/10.1175/1520-0493(1994)122<0003:TNNRSM>2.0.CO;2
  • KROL, M.; JAEGER, A.; BRONSTERT, A.; KRYWKOW, J. The Semi-arid Integrated Model (SIM), a regional integrated model assessing water availability, vulnerability of ecosystems and society in NE-Brazil. Physics and Chemistry of the Earth. Part B: Hydrology, Oceans and Atmosphere, v. 26, n. 7-8, p. 529-533, 2001. http://dx.doi.org/10.1016/S1464-1909(01)00045-4
    » http://dx.doi.org/10.1016/S1464-1909(01)00045-4
  • KROL, M. S.; BRONSTERT, A. Regional integrated modelling of climate change impacts on natural resources and resource usage in semi-arid Northeast Brazil. Environmental Modelling & Software, v. 22, n. 2, p. 259-268, 2007. http://dx.doi.org/10.1016/j.envsoft.2005.07.022
    » http://dx.doi.org/10.1016/j.envsoft.2005.07.022
  • KROL, M. S.; JAEGER, A.; BRONSTERT, A.; GÜNTNER, A. Integrated modelling of climate, water, soil, agricultural and socio-economic processes: A general introduction of the methodology and some exemplary results from the semi-arid north-east of Brazil. Journal of Hydrology (Amsterdam), v. 328, n. 3-4, p. 417-431, 2006. http://dx.doi.org/10.1016/j.jhydrol.2005.12.021
    » http://dx.doi.org/10.1016/j.jhydrol.2005.12.021
  • KRUK, N. S.; VENDRAME, Í. F.; CHOU, S. C. Coupling a Mesoscale Atmospheric Model with a Distributed Hydrological Model Applied to a Watershed in Southeast Brazil. Journal of Hydrologic Engineering, v. 18, n. 1, p. 58-65, 2013. http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000606
    » http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000606
  • KUNDZEWICZ, Z. W.; KRYSANOVA, V.; BENESTAD, R. E.; HOV, Ø.; PINIEWSKI, M.; OTTO, I. M. Uncertainty in climate change impacts on water resources. Environmental Science & Policy, v. 79, p. 1-8, 2018. http://dx.doi.org/10.1016/j.envsci.2017.10.008
    » http://dx.doi.org/10.1016/j.envsci.2017.10.008
  • KWON, H.-H.; ASSIS DE SOUZA FILHO, F.; BLOCK, P.; SUN, L.; LALL, U.; REIS JUNIOR, D. S. Uncertainty assessment of hydrologic and climate forecast models in Northeastern Brazil. Hydrological Processes, v. 26, n. 25, p. 3875-3885, 2012. http://dx.doi.org/10.1002/hyp.8433
    » http://dx.doi.org/10.1002/hyp.8433
  • LAMPARTER, G.; NOBREGA, R. L. B.; KOVACS, K.; AMORIM, R. S.; GEROLD, G. Modelling hydrological impacts of agricultural expansion in two macro-catchments in Southern Amazonia, Brazil. Regional Environmental Change, v. 31, 2016. http://dx.doi.org/10.1007/s10113-016-1015-2.
    » https://doi.org/10.1007/s10113-016-1015-2
  • LIMA, J. P. R.; ALVES, M. B. Um estudo de downscaling dinâmico de precipitação intrasazonal acoplado a modelo chuva-vazão na bacia hidrográfica alto-médio São Francisco. Revista Brasileira de Meteorologia, v. 24, n. 3, p. 323-338, 2009. http://dx.doi.org/10.1590/S0102-77862009000300006
    » http://dx.doi.org/10.1590/S0102-77862009000300006
  • LOPES, J. E. G.; BRAGA JUNIOR, B. P. F.; CONEJO, J. G. L. A. Simulação hidrológica: aplicações de um modelo simplificado. In: SIMPÓSIO BRASILEIRO DE HIDROLOGIA E RECURSOS HÍDRICOS, 4., 1981, Fortaleza. Anais... Fortaleza: SBRH, 1981. p. 42-62.
  • MARAUN, D.; WETTERHALL, F.; IRESON, A. M.; CHANDLER, R. E.; KENDON, E. J.; WIDMANN, M.; BRIENEN, S.; RUST, H. W.; SAUTER, T.; THEMEßL, M.; VENEMA, V. K. C.; CHUN, K. P.; GOODESS, C. M.; JONES, R. G.; ONOF, C.; VRAC, M.; THIELE-EICH, I. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics, v. 48, n. 3, p. RG3003, 2010. http://dx.doi.org/10.1029/2009RG000314
    » http://dx.doi.org/10.1029/2009RG000314
  • MARAUN, D.; SHEPHERD, T. G.; WIDMANN, M.; ZAPPA, G.; WALTON, D.; GUTIÉRREZ, J. M.; HAGEMANN, S.; RICHTER, I.; SOARES, P. M. M.; HALL, A.; MEARNS, L. O. Towards process-informed bias correction of climate change simulations. Nature Climate Change, v. 7, n. 11, p. 664-773, 2017. http://dx.doi.org/10.1038/nclimate3418
    » http://dx.doi.org/10.1038/nclimate3418
  • MARAUN, D.; WIDMANN, M. Statistical Downscaling and Bias Correction for Climate Research 1. ed. Cambridge: Cambridge University Press, 2018. http://dx.doi.org/10.1017/9781107588783
    » http://dx.doi.org/10.1017/9781107588783
  • MARENGO, J. A.; CHOU, S. C.; KAY, G.; ALVES, L. M.; PESQUERO, J. F.; SOARES, W. R.; SANTOS, D. C.; LYRA, A. A.; SUEIRO, G.; BETTS, R.; CHAGAS, D. J.; GOMES, J. L.; BUSTAMANTE, J. F.; TAVARES, P. Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Climate Dynamics, v. 38, n. 9–10, p. 1829-1848, 2012. http://dx.doi.org/10.1007/s00382-011-1155-5
    » http://dx.doi.org/10.1007/s00382-011-1155-5
  • MARENGO, J. A.; JONES, R.; ALVES, L. M.; VALVERDE, M. C. Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. International Journal of Climatology, v. 29, n. 15, p. 2241-2255, 2009. http://dx.doi.org/10.1002/joc.1863
    » http://dx.doi.org/10.1002/joc.1863
  • MARENGO, J. A.; MILLER, J. R.; RUSSELL, G. L.; ROSENZWEIG, C. E.; ABRAMOPOULOS, F. Calculations of river-runoff in the GISS GGM: impact of a new land-surface parameterization and runoff routing model on the hydrology of the Amazon River. Climate Dynamics, v. 10, n. 6, p. 349-361, 1994. http://dx.doi.org/10.1007/BF00228032
    » http://dx.doi.org/10.1007/BF00228032
  • MASTRANDREA, M. D.; MACH, K. J.; PLATTNER, G.-K.; EDENHOFER, O.; STOCKER, T. F.; FIELD, C. B.; EBI, K. L.; MATSCHOSS, P. R. The IPCC AR5 guidance note on consistent treatment of uncertainties: a common approach across the working groups. Climatic Change, v. 108, n. 4, p. 675-691, 2011. http://dx.doi.org/10.1007/s10584-011-0178-6
    » http://dx.doi.org/10.1007/s10584-011-0178-6
  • MEDEIROS, Y. D. P. Análise dos impactos das mudanças climáticas em região semi-árida. Revista Brasileira de Recursos Hídricos, v. 8, n. 2, p. 127-136, 2003. http://dx.doi.org/10.21168/rbrh.v8n2.p127-136
    » http://dx.doi.org/10.21168/rbrh.v8n2.p127-136
  • MEEHL, G. A.; COVEY, C.; DELWORTH, T.; LATIF, M.; MCAVANEY, B.; MITCHELL, J. F. B.; STOUFFER, R. J.; TAYLOR, K. E. THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research. Bulletin of the American Meteorological Society, v. 88, n. 9, p. 1383-1394, 2007. http://dx.doi.org/10.1175/BAMS-88-9-1383
    » http://dx.doi.org/10.1175/BAMS-88-9-1383
  • MELLO, E. L.; OLIVEIRA, F. A.; PRUSKI, F. F.; FIGUEIREDO, J. C. Effect of the climate change on the water availability in the Paracatu river basin. Engenharia Agrícola, v. 28, n. 4, p. 635-644, 2008. http://dx.doi.org/10.1590/S0100-69162008000400003
    » http://dx.doi.org/10.1590/S0100-69162008000400003
  • MELO, D. C. D.; MARIN, I. S. P.; WENDLAND, E. Water budget comparison of global climate models and experimental data in Onça Creek basin, Brazil. Proceedings of the International Association of Hydrological Sciences, v. 364, p. 70-75, 2014. http://dx.doi.org/10.5194/piahs-364-70-2014
    » http://dx.doi.org/10.5194/piahs-364-70-2014
  • MELO, D. C. D.; WENDLAND, E. Shallow aquifer response to climate change scenarios in a small catchment in the Guarani Aquifer outcrop zone. Anais da Academia Brasileira de Ciências, v. 89, n. 1, p. 391-406, 2017. Supplement. http://dx.doi.org/10.1590/0001-3765201720160264
    » http://dx.doi.org/10.1590/0001-3765201720160264
  • MENDES, C. A. B.; BELUCO, A.; CANALES, F. A. Some important uncertainties related to climate change in projections for the Brazilian hydropower expansion in the Amazon. Energy, v. 141, p. 123-138, 2017. http://dx.doi.org/10.1016/j.energy.2017.09.071
    » http://dx.doi.org/10.1016/j.energy.2017.09.071
  • MOHOR, G. S.; MENDIONDO, E. M. Economic indicators of hydrologic drought insurance under water demand and climate change scenarios in a Brazilian context. Ecological Economics, v. 140, p. 66-78, 2017. http://dx.doi.org/10.1016/j.ecolecon.2017.04.014
    » http://dx.doi.org/10.1016/j.ecolecon.2017.04.014
  • MOHOR, G. S.; RODRIGUEZ, D. A.; TOMASELLA, J.; SIQUEIRA JÚNIOR, J. L. Exploratory analyses for the assessment of climate change impacts on the energy production in an Amazon run-of-river hydropower plant. Journal of Hydrology: Regional Studies, v. 4, p. 41-59, 2015. http://dx.doi.org/10.1016/j.ejrh.2015.04.003
    » http://dx.doi.org/10.1016/j.ejrh.2015.04.003
  • MONTENEGRO, A.; RAGAB, R. Hydrological response of a Brazilian semi-arid catchment to different land use and climate change scenarios: a modelling study. Hydrological Processes, v. 24, n. 19, p. 2705-2723, 2010. http://dx.doi.org/10.1002/hyp.7825
    » http://dx.doi.org/10.1002/hyp.7825
  • MONTENEGRO, S.; RAGAB, R. Impact of possible climate and land use changes in the semi arid regions: A case study from North Eastern Brazil. Journal of Hydrology, v. 434-435, p. 55-68, 2012. http://dx.doi.org/10.1016/j.jhydrol.2012.02.036
    » http://dx.doi.org/10.1016/j.jhydrol.2012.02.036
  • NOBRE, C. A.; SAMPAIO, G.; BORMA, L. S.; CASTILLA-RUBIO, J. C.; SILVA, J. S.; CARDOSO, M. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proceedings of the National Academy of Sciences of the United States of America, v. 113, n. 39, p. 10759-10768, 2016. http://dx.doi.org/10.1073/pnas.1605516113
    » http://dx.doi.org/10.1073/pnas.1605516113
  • NÓBREGA, M. T.; COLLISCHONN, W.; TUCCI, C. E. M.; PAZ, A. R. Uncertainty in climate change impacts on water resources in the Rio Grande Basin, Brazil. Hydrology and Earth System Sciences, v. 15, n. 2, p. 585-595, 2011. http://dx.doi.org/10.5194/hess-15-585-2011
    » http://dx.doi.org/10.5194/hess-15-585-2011
  • OLIVEIRA, G. G.; PEDROLLO, O. C.; CASTRO, N. M. R. As incertezas associadas às condições climáticas obtidas pelo modelo Eta CPTEC/HadCM3: avaliação comparativa entre os dados simulados e observados de precipitação, evapotranspiração e vazão na bacia hidrográfica do rio Ijuí, Brasil. Revista Brasileira de Meteorologia, v. 30, n. 1, p. 101-121, 2015a. http://dx.doi.org/10.1590/0102-778620140041
    » http://dx.doi.org/10.1590/0102-778620140041
  • OLIVEIRA, G. G.; PEDROLLO, O. C.; CASTRO, N. M. R. Stochastic approach to analyzing the uncertainties and possible changes in the availability of water in the future based on scenarios of climate change. Hydrology and Earth System Sciences, v. 19, n. 8, p. 3585-3604, 2015b. http://dx.doi.org/10.5194/hess-19-3585-2015
    » http://dx.doi.org/10.5194/hess-19-3585-2015
  • PERAZZOLI, M.; PINHEIRO, A.; KAUFMANN, V. Assessing the impact of climate change scenarios on water resources in southern Brazil. Hydrological Sciences Journal, v. 58, n. 1, p. 77-87, 2013. http://dx.doi.org/10.1080/02626667.2012.742195
    » http://dx.doi.org/10.1080/02626667.2012.742195
  • PEREIRA, F. F.; MORAES, M. A. E.; UVO, C. B. Implementation of a two-way coupled atmospheric-hydrological system for environmental modeling at regional scale. Hydrology Research, v. 45, n. 3, p. 504-514, 2014. http://dx.doi.org/10.2166/nh.2013.335
    » http://dx.doi.org/10.2166/nh.2013.335
  • PINHEIRO, A.; GRACIANO, R. L. G.; KAUFMANN, V. Simulating effects of climate scenarios on hydrological processes in southern Brazil using a lysimeter. International Journal of Climatology, v. 33, n. 9, p. 2206-2214, 2013. http://dx.doi.org/10.1002/joc.3591
    » http://dx.doi.org/10.1002/joc.3591
  • PINHEIRO, E.; VAN LIER, Q.; BEZERRA, A. Hydrology of a Water‐Limited Forest under Climate Change Scenarios: The Case of the Caatinga Biome, Brazil. Forests, v. 8, n. 3, p. 62, 2017. http://dx.doi.org/10.3390/f8030062
    » http://dx.doi.org/10.3390/f8030062
  • POPESCU, I.; BRANDIMARTE, L.; PEVIANI, M. Effects of climate change over energy production in La Plata Basin. International Journal of River Basin Management, v. 12, n. 4, p. 319-327, 2014. http://dx.doi.org/10.1080/15715124.2014.917317
    » http://dx.doi.org/10.1080/15715124.2014.917317
  • RAMOS IENSEN, I. R.; BAUER SCHULTZ, G.; SANTOS, I. Simulation of hydrosedimentological impacts caused by climate change in the Apucaraninha River watershed, southern Brazil. Proceedings of the International Association of Hydrological Sciences, v. 367, p. 366-373, 2015. http://dx.doi.org/10.5194/piahs-367-366-2015
    » http://dx.doi.org/10.5194/piahs-367-366-2015
  • RANDALL, D. A.; WOOD, R. A. Climate Models and Their Evaluation. In: SOLOMON, S.; QIN D.; MANNING M.; CHEN Z.; MARQUIS M.; AVERYT K. B.; TIGNOR M. and MILLER H. L. (Eds.). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge: Cambridge University Press, 2007. p. 589-662.
  • RIBEIRO JÚNIOR, L.; ZUFFO, A.; SILVA, B. Development of a tool for hydroeletric reservoir operation with multiple uses considering effects of climate changes. Case study of Furnas HPP. Revista Brasileira de Recursos Hídricos, v. 21, n. 2, p. 300-313, 2016. http://dx.doi.org/10.21168/rbrh.v21n2.p300-313
    » http://dx.doi.org/10.21168/rbrh.v21n2.p300-313
  • RIBEIRO NETO, A.; PAZ, A. R.; MARENGO, J. A.; CHOU, S. C. Hydrological Processes and Climate Change in Hydrographic Regions of Brazil. Journal of Water Resource and Protection, v. 08, n. 12, p. 1103-1127, 2016. http://dx.doi.org/10.4236/jwarp.2016.812087
    » http://dx.doi.org/10.4236/jwarp.2016.812087
  • RIBEIRO NETO, A.; SCOTT, C. A.; LIMA, E. A.; MONTENEGRO, S.; CIRILO, J. A. Infrastructure sufficiency in meeting water demand under climate-induced socio-hydrological transition in the urbanizing Capibaribe River basin - Brazil. Hydrology and Earth System Sciences, v. 18, n. 9, p. 3449-3459, 2014. http://dx.doi.org/10.5194/hess-18-3449-2014
    » http://dx.doi.org/10.5194/hess-18-3449-2014
  • RIVAROLA SOSA, J. M.; BRANDANI, G.; DIBARI, C.; MORIONDO, M.; FERRISE, R.; TROMBI, G.; BINDI, M. Climate change impact on the hydrological balance of the Itaipu Basin. Meteorological Applications, v. 18, n. 2, p. 163-170, 2011. http://dx.doi.org/10.1002/met.213
    » http://dx.doi.org/10.1002/met.213
  • ROSENZWEIG, C.; STRZEPEK, K. M.; MAJOR, D. C.; IGLESIAS, A.; YATES, D. N.; MCCLUSKEY, A.; HILLEL, D. Water resources for agriculture in a changing climate: international case studies. Global Environmental Change, v. 14, n. 4, p. 345-360, 2004. http://dx.doi.org/10.1016/j.gloenvcha.2004.09.003
    » http://dx.doi.org/10.1016/j.gloenvcha.2004.09.003
  • SALAZAR, L. F.; NOBRE, C. A.; OYAMA, M. D. Climate change consequences on the biome distribution in tropical South America. Geophysical Research Letters, v. 34, n. 9, p. 16, 2007. http://dx.doi.org/10.1029/2007GL029695
    » http://dx.doi.org/10.1029/2007GL029695
  • SAMUELSSON, P.; JONES, C. G.; WILL´EN, U.; ULLERSTIG, A.; GOLLVIK, S.; HANSSON, U.; JANSSON, E.; KJELLSTRO¨M, C.; NIKULIN, G.; WYSER, K. The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus A. Dynamic Meteorology and Oceanography, v. 63, n. 1, p. 4-23, 2011. http://dx.doi.org/10.1111/j.1600-0870.2010.00478.x
    » http://dx.doi.org/10.1111/j.1600-0870.2010.00478.x
  • SANTHI, C.; SRINIVASAN, R.; ARNOLD, J. G.; WILLIAMS, J. R. A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas. Environmental Modelling & Software, v. 21, n. 8, p. 1141-1157, 2006. http://dx.doi.org/10.1016/j.envsoft.2005.05.013
    » http://dx.doi.org/10.1016/j.envsoft.2005.05.013
  • SHUKLA, J.; PALMER, T. N.; HAGEDORN, R.; HOSKINS, B.; KINTER, J.; MAROTZKE, J.; MILLER, M.; SLINGO, J. Toward a New Generation of World Climate Research and Computing Facilities. Bulletin of the American Meteorological Society, v. 91, n. 10, p. 1407-1412, 2010. http://dx.doi.org/10.1175/2010BAMS2900.1
    » http://dx.doi.org/10.1175/2010BAMS2900.1
  • SILVEIRA, C. S.; FILHO, F.; LOPES, J.; BARBOSA, P.; TIEZZI, R. Análise das projeções de vazões nas bacias do setor elétrico brasileiro usando dados do IPCC-AR4 para o século XXI. Revista Brasileira de Recursos Hídricos, v. 19, n. 4, p. 59-71, 2014. http://dx.doi.org/10.21168/rbrh.v19n4.p59-71
    » http://dx.doi.org/10.21168/rbrh.v19n4.p59-71
  • SILVEIRA, C. S.; SOUZA FILHO, F. A.; VASCONCELOS JÚNIOR, F. C. Streamflow projections for the Brazilian hydropower sector from RCP scenarios. Journal of Water and Climate Change, v. 8, n. 1, p. 114-126, 2017. http://dx.doi.org/10.2166/wcc.2016.052
    » http://dx.doi.org/10.2166/wcc.2016.052
  • SIQUEIRA JÚNIOR, J. L.; TOMASELLA, J.; RODRIGUEZ, D. A. Impacts of future climatic and land cover changes on the hydrological regime of the Madeira River basin. Climatic Change, v. 129, n. 1-2, p. 117-129, 2015. http://dx.doi.org/10.1007/s10584-015-1338-x
    » http://dx.doi.org/10.1007/s10584-015-1338-x
  • SORRIBAS, M. V.; PAIVA, R. C. D.; MELACK, J. M.; BRAVO, J. M.; JONES, C.; CARVALHO, L.; BEIGHLEY, E.; FORSBERG, B.; COSTA, M. H. Projections of climate change effects on discharge and inundation in the Amazon basin. Climatic Change, v. 136, n. 3-4, p. 555-570, 2016. http://dx.doi.org/10.1007/s10584-016-1640-2
    » http://dx.doi.org/10.1007/s10584-016-1640-2
  • STERLING, S. M.; DUCHARNE, A.; POLCHER, J. The impact of global land-cover change on the terrestrial water cycle. Nature Climate Change, v. 3, n. 4, p. 385-390, 2012. http://dx.doi.org/10.1038/nclimate1690
    » http://dx.doi.org/10.1038/nclimate1690
  • TAYLOR, K. E.; STOUFFER, R. J.; MEEHL, G. A. An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, v. 93, n. 4, p. 485-498, 2012. http://dx.doi.org/10.1175/BAMS-D-11-00094.1
    » http://dx.doi.org/10.1175/BAMS-D-11-00094.1
  • TEBALDI, C.; KNUTTI, R. The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, v. 365, n. 1857, p. 2053-2075, 2007. https://dx.doi.org/10.1098/rsta.2007.2076
    » https://dx.doi.org/10.1098/rsta.2007.2076
  • TEJADAS, B. E.; BRAVO, J. M.; SANAGIOTTO, D. G.; TASSI, R.; MARQUES, D. M. L. Projeções de vazão afluente à lagoa mangueira com base em cenários de mudanças climáticas. Revista Brasileira de Meteorologia, v. 31, n. 3, p. 262-272, 2016. http://dx.doi.org/10.1590/0102-778631320150139
    » http://dx.doi.org/10.1590/0102-778631320150139
  • TEUTSCHBEIN, C.; SEIBERT, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology, v. 456-457, p. 12-29, 2012. http://dx.doi.org/10.1016/j.jhydrol.2012.05.052
    » http://dx.doi.org/10.1016/j.jhydrol.2012.05.052
  • TODD, M. C.; TAYLOR, R. G.; OSBORN, T. J.; KINGSTON, D. G.; ARNELL, N. W.; GOSLING, S. N. Uncertainty in climate change impacts on basin-scale freshwater resources – preface to the special issue: the QUEST-GSI methodology and synthesis of results. Hydrology and Earth System Sciences, v. 15, n. 3, p. 1035-1046, 2011. http://dx.doi.org/10.5194/hess-15-1035-2011
    » http://dx.doi.org/10.5194/hess-15-1035-2011
  • TOMASELLA, J.; BORMA, L. S.; MARENGO, J. A.; RODRIGUEZ, D. A.; CUARTAS, L. A.; NOBRE, C.; PRADO, M. C. R. The droughts of 1996-1997 and 2004-2005 in Amazonia: hydrological response in the river main-stem. Hydrological Processes, v. 25, n. 8, p. 1228-1242, 2011. http://dx.doi.org/10.1002/hyp.7889
    » http://dx.doi.org/10.1002/hyp.7889
  • TORRES, R. R.; MARENGO, J. A. Climate change hotspots over South America: from CMIP3 to CMIP5 multi-model datasets. Theoretical and Applied Climatology, v. 117, n. 3-4, p. 579-587, 2014. http://dx.doi.org/10.1007/s00704-013-1030-x
    » http://dx.doi.org/10.1007/s00704-013-1030-x
  • TUCCI, C. E. M.; CLARKE, R. T.; COLLISCHONN, W.; SILVA DIAS, P. L.; OLIVEIRA, G. S. Long-term flow forecasts based on climate and hydrologic modeling: Uruguay River basin. Water Resources Research, v. 39, n. 7, 2003. http://dx.doi.org/10.1029/2003WR002074
    » http://dx.doi.org/10.1029/2003WR002074
  • VALÉRIO, E.; JÚNIOR, C. Avaliação dos efeitos de mudanças climáticas no regime hidrológico da bacia do rio Paraguaçu, BA / Evaluation of the effects of climate change on the hydrological response of the Paraguaçu river basin. Revista Brasileira de Recursos Hídricos, v. 20, n. 4, p. 872-887, 2015. http://dx.doi.org/10.21168/rbrh.v20n4.p872-887
    » http://dx.doi.org/10.21168/rbrh.v20n4.p872-887
  • VIOLA, M. R.; MELLO, C. R.; CHOU, S. C.; YANAGI, S. N.; GOMES, J. L. Assessing climate change impacts on Upper Grande River Basin hydrology, Southeast Brazil. International Journal of Climatology, v. 35, n. 6, p. 1054-1068, 2015. http://dx.doi.org/10.1002/joc.4038
    » http://dx.doi.org/10.1002/joc.4038
  • WERNER, P.; GERSTENGARBE, F. Proposal for the development of climate scenarios. Climate Research, v. 8, p. 171-182, 1997. http://dx.doi.org/10.3354/cr008171
    » http://dx.doi.org/10.3354/cr008171
  • WIGLEY, T. M. L. MAGICC/SCENGEN 5.3: user manual (version 2). Colorado: National Center for Atmospheric Research (NCAR), 2008.
  • WILBY, R. L.; TRONI, J.; BIOT, Y.; TEDD, L.; HEWITSON, B. C.; SMITH, D. M.; SUTTON, R. T. A review of climate risk information for adaptation and development planning. International Journal of Climatology, v. 29, n. 9, p. 1193-1215, 2009. http://dx.doi.org/10.1002/joc.1839
    » http://dx.doi.org/10.1002/joc.1839
  • ZANINELLI, P. G.; MENÉNDEZ, C. G.; FALCO, M.; LÓPEZ-FRANCA, N.; CARRIL, A. F. Future hydroclimatological changes in South America based on an ensemble of regional climate models. Climate Dynamics, v. 52, n. 1-2, p. 819-830, 2018.

Publication Dates

  • Publication in this collection
    01 July 2019
  • Date of issue
    2019

History

  • Received
    20 Nov 2018
  • Reviewed
    06 Apr 2019
  • Accepted
    11 May 2019
Associação Brasileira de Recursos Hídricos Av. Bento Gonçalves, 9500, CEP: 91501-970, Tel: (51) 3493 2233, Fax: (51) 3308 6652 - Porto Alegre - RS - Brazil
E-mail: rbrh@abrh.org.br