SciELO - Scientific Electronic Library Online

vol.76 número4Overview of genotypic and clinical profiles of human immunodeficiency virus type 1-infected children in Rio de Janeiro, BrazilSolvent-related chronic toxic encephalopathy as a target in the worker's mental health research índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




Links relacionados


Anais da Academia Brasileira de Ciências

versão impressa ISSN 0001-3765versão On-line ISSN 1678-2690


BODI, Estevão et al. Gap junctions in hematopoietic stroma control proliferation and differentiation of blood cell precursors. An. Acad. Bras. Ciênc. [online]. 2004, vol.76, n.4, pp.743-756. ISSN 0001-3765.

We examined gap junction communication in an in vitro model of hematopoiesis, using the murine bone marrow stroma cell line S-17, and primary cultures of murine marrow-derived blood cell precursors. S-17 cells express several connexins, the major one being connexin 43. Connexin expression and formation of functional gap junctions is modulated by stroma cell density. Transfection of S-17 cells with a vector containing connexin 43 sense or anti-sense sequences increased or decreased, respectively, connexin 43 synthesis and intercellular dye coupling. Under these conditions, modulation of gap junction-mediated communication modified the growth pattern of stroma itself, as well as the ability of the stroma to sustain hematopoiesis. Increased connexin 43 expression was associated with a delay in differentiation of blood cells, resulting in increased production of hematopoietic precursors, while decreased connexin 43 expression elicited an accelerated differentiation of myeloid blood cell precursor cells. These results suggest that connexin-mediated coupling in the stroma modulates the ratio between proliferation and differentiation of hematopoietic precursors. We therefore propose that increased gap junction communication in the stroma elicits an enhanced production of immature bone marrow cells through the delay in their terminal differentiation, inducing consequently an extended proliferation period of blood cell precursors.

Palavras-chave : bone marrow; hematopoiesis; connexins; Gap junctions; S-17 cells.

        · resumo em Português     · texto em Inglês     · Inglês ( pdf )


Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons