SciELO - Scientific Electronic Library Online

vol.88 issue2Nematode larvae infecting Priacanthus arenatus Cuvier, 1829 (Pisces: Teleostei) in BrazilPalynological analysis of Dennstaedtiaceae taxa from the Paranaense Phytogeographic Province that produce Trilete spores II: Microlepia speluncae and Pteridium arachnoideum author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Anais da Academia Brasileira de Ciências

Print version ISSN 0001-3765On-line version ISSN 1678-2690


MORAES, Fernanda D. et al. Metabolic responses of channel catfish (Ictalurus punctatus) exposed to phenol and post-exposure recovery. An. Acad. Bras. Ciênc. [online]. 2016, vol.88, n.2, pp.865-875.  Epub May 31, 2016. ISSN 0001-3765.

Metabolic adjustments were studied in channel catfish Ictalurus punctatus exposed to 1.5 mg L-1 of phe nol (10% LC50) for four days and recovered for seven days. Lower triacylglycerol (TGA) stores and increased muscle fat free acids (FFA) suggest fat catabolism in muscle. Remarkable liver FFA decrease (-31%) suggests liver fat catabolism as well. Increased muscular ammonia levels and ASAT (aspartate aminotransferase) and decreased plasma aminoacids suggest higher muscular amino acid uptake. Constant levels of glucose and increased liver glycogen stores, associated with lower amino acids in plasma, indicate gluconeogenesis from amino acids. This is supported by higher hepatic ALAT and ASAT. Higher hepatic LDH followed by lower plasma lactate may indicate that plasma lactate was also used as gluconeogenic substrate. Biochemical alterations were exacerbated during the post-exposure recovery period. Reduction in muscle and plasma protein content indicate proteolysis. A higher rate of liver fat catabolism was resulted from a remarkable decrease in hepatic TGA (-58%). Catabolic preference for lipids was observed in order to supply such elevated energy demand. This study is the first insight about the metabolic profile of I. punctatus to cope with phenol plus its ability to recover, bringing attention to the biological consequences of environmental contamination.

Keywords : metabolic adjustments; enzymes; lipid stores; intermediary metabolism; recovery; xenobiotic.

        · abstract in Portuguese     · text in English     · English ( pdf )