SciELO - Scientific Electronic Library Online

 
vol.89 número1The partitioning of food resources between two rodents in the subtropical region of southern BrazilLong-wavelength sensitive opsin (LWS) gene variability in Neotropical cichlids (Teleostei: Cichlidae) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


Anais da Academia Brasileira de Ciências

versão impressa ISSN 0001-3765versão On-line ISSN 1678-2690

Resumo

SILVA, LENISE L. et al. S-(+)- and R-(-)-linalool: a comparison of the in vitro anti-Aeromonas hydrophila activity and anesthetic properties in fish. An. Acad. Bras. Ciênc. [online]. 2017, vol.89, n.1, pp.203-212. ISSN 0001-3765.  http://dx.doi.org/10.1590/0001-3765201720150643.

Linalool is the main compound of many essential oils and occurs in two isomeric forms: S-(+)- and R-(-)-linalool. This study aimed to determine if linalool isomers have different antimicrobial and anesthetic properties in fish. For this purpose, these compounds were previously isolated from Lippia alba (Mill.)N. E. Brown and Ocimum americanum L. essential oils. Antimicrobial effects were evaluated through the microdilution test against Aeromonas hydrophila, an important fish disease etiologic agent. Induction time until sedation, anesthesia and recovery time were determined in silver catfish (Rhamdia quelen) through bath exposure (60, 180, 300 or 500 μL L-1). The results showed different biological properties for the isomers being S-(+)-linalool the only active against A. hydrophila at 3.2 mg mL-1. The sedation was induced without differences between the compounds, however R-(-)-linalool promoted faster anesthesia. There were no differences regarding the recovery time of the animals exposed to the linalool isomers. Although both S-(+)- and R-(-)-linalool can be used for sedative purposes, their use in A. hydrophila infection is inadvisable due to the high effective concentration. Considering anesthesia as the main objective, the R-(-)-linalool demonstrated clear advantages at lower concentration.

Palavras-chave : anesthesia; Aeromonas hydrophila; chirality; linalool; silver catfish..

        · texto em Inglês     · Inglês ( pdf )