SciELO - Scientific Electronic Library Online

 
vol.90 número1  suppl.1Activity and Stability of Dispersed Multi Metallic Pt-based Catalysts for CO Tolerance in Proton Exchange Membrane Fuel Cell AnodesSunlight-driven water splitting using hematite nanorod photoelectrodes índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


Anais da Academia Brasileira de Ciências

versão impressa ISSN 0001-3765versão On-line ISSN 1678-2690

Resumo

GEONMONOND, RAFAEL S.; SILVA, ANDERSON G.M. DA  e  CAMARGO, PEDRO H.C.. Controlled synthesis of noble metal nanomaterials: motivation, principles, and opportunities in nanocatalysis. An. Acad. Bras. Ciênc. [online]. 2018, vol.90, n.1, suppl.1, pp.719-744.  Epub 16-Abr-2018. ISSN 0001-3765.  http://dx.doi.org/10.1590/0001-3765201820170561.

This review describes some principles of the controlled synthesis of metal nanoparticles, focusing on how the fundamental understanding of their synthesis in the solution-phase can be put to tailor size, shape, composition, and architecture. The maneuvering over these parameters not only enable the tuning of properties, but also the maximization and optimization of performances for various applications. Herein, we start with a brief description of metallic nanoparticles, highlighting the motivation for achieving physicochemical control in their synthesis. After that, we turn our attention to some important definitions and classifications as well as their unique properties such as surface and quantum effects. Moreover, we discuss the strategies for the controlled synthesis of metal nanomaterials based on the top-down and bottom-up approaches, focusing our discussion on their formation mechanisms in liquid-phase in terms of both thermodynamic and kinetic control. Finally, we point out the promising applications of controlled nanomaterials in the field of nanocatalysis and plasmon-enhanced catalysis, describing some of the current challenges in these fields.

Palavras-chave : controlled synthesis; noble-metals; nanomaterials; catalysis.

        · texto em Inglês     · Inglês ( pdf )