SciELO - Scientific Electronic Library Online

 
vol.80 issue3The effect of soy polysaccharide fiber on fecal weight and humidity in growing ratsDiagnosis of reflux esophagitis in infants: histology of the distal esophagus must complement upper gastrointestinal endoscopy author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Jornal de Pediatria

Print version ISSN 0021-7557

Abstract

VIANA, Mario E. G. et al. The impact of mechanical ventilation strategies that minimize atelectrauma in an experimental model of acute lung injury. J. Pediatr. (Rio J.) [online]. 2004, vol.80, n.3, pp. 189-196. ISSN 0021-7557.  http://dx.doi.org/10.2223/1182.

OBJECTIVE: To evaluate whether ventilation strategies that target alveolar stabilization and prevention of atelectrauma would be associated with more favorable physiologic outcomes in a combined model of acute lung injury. METHODS: Thirty-nine rabbits were instrumented and ventilated with FiO2 of 1.0. Combined lung injury was induced by an infusion of lipopolysaccharide and tracheal saline lavage. Animals were randomized to receive conventional ventilation with tidal volume of 10 ml/kg, PEEP of 4 cm H2O; conventional ventilation with surfactant (Infasurf, 3 mg/kg IT); partial liquid ventilation (18 ml/kg of perflubron IT); or high-frequency oscillatory ventilation with mean airway pressure of 14 cm H2O and frequency of 4 Hz. Uninjured ventilated animals served as controls. Conventional ventilation with surfactant, partial liquid ventilation and control groups were ventilated with settings identical to the conventional ventilation group. Animals were studied for 4 hours, during which serial blood gas measurements were obtained. After sacrifice, lungs were harvested for injury grading by a microscopic lung injury score and measurement of 4-hydroxy-nonenal, a marker of lipid peroxidation. RESULTS: Conventional ventilation resulted in hypoxia and greater evidence of lung injury. Animals treated with partial liquid ventilation, high-frequency oscillatory ventilation or conventional ventilation with surfactant had adequate oxygenation, but conventional ventilation with surfactant resulted in higher lung injury scores and increased pulmonary oxidative damage. CONCLUSION: Strategies that minimize atelectrauma (partial liquid ventilation and high-frequency oscillatory ventilation) are associated with adequate oxygenation and attenuated lung injury. Surfactant improves oxygenation in comparison to conventional ventilation alone but resulted in increased injury, presumably because the inadequately low PEEP was insufficient to stabilize the alveoli during expiration.

Keywords : Acute lung injury; atelectrauma; mechanical ventilation; acute respiratory distress syndrome; high-frequency oscillatory ventilation; liquid ventilation; surfactant.

        · abstract in Portuguese     · text in English | Portuguese     · pdf in English | Portuguese