SciELO - Scientific Electronic Library Online

 
vol.31 número4Teor de nitrato como indicador complementar da disponibilidade de nitrogênio no solo para o milhoEvolução quaternária, distribuição de partículas nos solos e ambientes de sedimentação em manguezais do estado de São Paulo índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


Revista Brasileira de Ciência do Solo

versão On-line ISSN 1806-9657

Resumo

CABEZAS, Waldo Alejandro Ruben Lara  e  COUTO, Pedro Afonso. Nitrogen immobilization of urea and ammonium sulphate applied to maize before planting or top-dressing in a no-till system. Rev. Bras. Ciênc. Solo [online]. 2007, vol.31, n.4, pp.739-752. ISSN 1806-9657.  http://dx.doi.org/10.1590/S0100-06832007000400015.

Ammonium sulfate (AS) and urea (U), labeled with 15N, were applied to no-till maize, 33 days before and 10 days after sowing, at a single rate of 80 kg ha-1 of N incorporated 5-7 cm deep along furrows spaced 0.8 m. Corn was sown after black oat (Avena strigosa Schieb.).The amount of immobilized N and of N-fertilizer recovered by corn plants was evaluated at the following plants stages: 4-5 leaves, 11-12 leaves, flowering, and at harvest. Treatments were applied in a randomized block design with three replications. The analysis of variance was performed based on one factorial scheme (2 x 6) with two sources in pre-planting (AS and U) on six sampling dates, and on a second (2 x 3) with two sources in top-dressing on three sampling dates. This field experiment was carried out on a Typic Acrustox in Uberlandia, Minas Gerais state, Brazil. Pre-planting applications resulted in a maximal AS-N immobilization 22 days after fertilizer application (9.1 kg ha-1 or 11.4 % of applied N), whereas the maximum immobilization of U-N occurred 11 days after fertilizer application (46.5 kg ha-1 or 58.1 % of applied N). Until harvest, the plants (aerial part, grains and roots) had accumulated 66.0 and 47.9 of AS-N and U-N, respectively (use efficiency of 82.5 and 59.9 % of applied N). N top-dressing resulted in 12.5 % less N immobilized applied as both sources in all growth stages, evidencing that the soil biomass did not compete with the plants for N-fertilizer, in agreement with results of the growing season 1999/2000. In both growing seasons (1999/2000 and 2000/2001) corn plants assimilated an average 8.9 and 15.4 kg ha-1 of AS-N for each kg of immobilized N-fertilizer from pre-planting and top-dressing, respectively, in the stage of 11-12 leaves and at flowering. For U-N these values were 4.5 and 5.2 kg ha-1, respectively, presenting a lower ratio of immobilized AS-N in top-dressing. Highest corn yields were obtained in the AS treatments (mean grain yield of 8.543 kg ha-1) independent of the application time. Urea treated plants obtained average grain yields of 7.767 kg ha-1 for both application periods. These results show that for pre-planting fertilizers the immobilization-mineralization N turnover was faster in the AS than in the U-N treatment. Consequently, N assimilation by corn plants was higher in the AS treatments. Only U-N was significantly immobilized more also in the second growing season when top-dressed, thus limiting plant N uptake.

Palavras-chave : soil biomass; 15N isotope; ratio of fertilizer-N in plant /immobilized fertilizer-N; N-immobilized N, mineralized N.

        · resumo em Português     · texto em Português     · Português ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons