SciELO - Scientific Electronic Library Online

 
vol.32 número especialAplicação de calcário e culturas de cobertura na implantação do sistema plantio direto em cerradoQualidade de um sistema latossolo-argissolo como receptor de efluentes no município de Lins(SP) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


Revista Brasileira de Ciência do Solo

versão On-line ISSN 1806-9657

Resumo

FIGUEIREDO, Samuel Ribeiro; GIASSON, Elvio; TORNQUIST, Carlos Gustavo  e  NASCIMENTO, Paulo César do. Multiple logistic regression applied to soil survey in rio grande do sul state, Brazil. Rev. Bras. Ciênc. Solo [online]. 2008, vol.32, n.spe, pp.2779-2785. ISSN 1806-9657.  http://dx.doi.org/10.1590/S0100-06832008000700023.

Logistic nominal regressions establish mathematical relations between continuous or discrete independent variables and discrete dependent variables. The prediction potential of the occurrence and distribution of soil classes in the region Ibirubá and Quinze de Novembro, RS, Brazil was evaluated. Using a digital elevation model (DEM) with 90 m resolution, were calculated several topographic characteristics (elevation, slope, and curvature) and hydrographic variables (distance to rivers, flow length, topographical wetness index, and stream power index). Multiple logistic regressions were established between the soil classes mapped on the basis of a traditional survey at a scale of 1:80.000 and the land variables calculated using the DEM. The regressions were used to calculate the probability of occurrence of each soil class. The final estimated soil map was drawn by assigning the soil class with highest probability of occurrence to each cell. The general accuracy was evaluated at 58 % and the Kappa coefficient at 38 % in a comparison of the original soil map with the map estimated at the original scale. A legend simplification had little effect to increase the general accuracy of the map (general accuracy of 61 % and Kappa coefficient of 39 %). It was concluded that multiple logistic regressions have a predictive potential as tool of supervised soil mapping.

Palavras-chave : GIS; digital elevation model; topography; hydrography; digital soil mapping.

        · resumo em Português     · texto em Português     · Português ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons