SciELO - Scientific Electronic Library Online

 
vol.34 número6Eficiência técnica de fertilizantes fosfatados em latossolo sob plantio diretoDisponibilidade de cobre para mudas de eucalipto em solos de cerrado índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


Revista Brasileira de Ciência do Solo

versão On-line ISSN 1806-9657

Resumo

ROSOLEM, Ciro Antonio; ANDRADE, Gabriel José Massoni de; LISBOA, Izaias Pinheiro  e  ZOCA, Samuel Menegatti. Manganese uptake and redistribution in soybean as affected by glyphosate. Rev. Bras. Ciênc. Solo [online]. 2010, vol.34, n.6, pp.1915-1922. ISSN 1806-9657.  http://dx.doi.org/10.1590/S0100-06832010000600016.

Detrimental effects of glyphosate on plant mineral nutrition have been reported in the literature, particularly on Mn uptake and redistribution. However, in most of the experiments conducted so far glyphosate-susceptible plants were used. Effects of glyphosate on Mn absorption kinetics, accumulation, and distribution within the plant, as well as soybean response to Mn as affected by glyphosate were studied in three experiments. In the first experiment, in nutrient solution, the effect of glyphosate on soybean Mn uptake kinetic parameters (Imax, Km and Cmin) was determined. In a second experiment, also in nutrient solution, differential Mn accumulation and distribution were studied for a conventional soybean cultivar and its near-isogenic glyphosate-resistant counterpart as affected by glyphosate. In a third experiment, response of glyphosate-resistant soybean cultivars to Mn application was studied in the presence of glyphosate, in pots with Mn-deficient soil. Maximum Mn influx (Imax) was higher in the herbicide-resistant (GR) cultivar than in its conventional counterpart. Glyphosate applied to nutrient solution at low rates decreased Km and Cmin. A few days after herbicide treatment, RR soybean plants developed yellowish leaves, a symptom which, in the field, could be misinterpreted as Mn deficiency, but herbicide application had no effect on Mn uptake or distribution within the plant. In the soil experiment, soybean Mn uptake was increased by Mn application, with no effect of glyphosate. Under greenhouse conditions, there was no evidence of deleterious effects of glyphosate on Mn absorption, accumulation and distribution in the plant and on soybean cultivars response to Mn application.

Palavras-chave : absorption kinetics; micronutrient; mineral nutrition.

        · resumo em Português     · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons