SciELO - Scientific Electronic Library Online

vol.36 issue1Influence of liming on residual soil respiration and chemical properties in a tropical no-tillage systemSoil physical properties and sugarcane root growth in a red oxiso author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Revista Brasileira de Ciência do Solo

On-line version ISSN 1806-9657


FERREIRA, Dorotéia Alves; CARNEIRO, Marco Aurélio Carbone  and  SAGGIN JUNIOR, Orivaldo José. Arbuscular mycorrhizal fungi in an oxisol under managements and uses in cerrado. Rev. Bras. Ciênc. Solo [online]. 2012, vol.36, n.1, pp.51-61. ISSN 1806-9657.

The alterations in the communities of arbuscular mycorrhizal fungi (AMF) induced by changes in land use and different agricultural uses are still insufficiently studied, particularly in the Cerrado biome. This study evaluated how human interference by management and land use change affect the AMF density and diversity in a Cerrado Oxisol. The study evaluated five areas: Riparian Forest (MC), Riparian Forest Edge (BM), Pasture (Past), no-till monoculture (PD) and Riparian Deforested Area (AD). In each area, 20 plots of 250 m2 were marked. Within each plot, 10 subsamples were randomly collected to form a composite soil sample. The density and diversity of AMF spores, by morphological characteristics, were determined for each composite sample. In the PD and AD areas, the density of recovered spores and mycorrhizal colonization were lower than in the other areas due to the low density of living plants. The AMF families with highest abundance in the study areas were Acaulosporaceae, Glomeraceae and Gigasporaceae, the first two dominant in the areas with leass anthropogenic influence MC and BM. The most frequent AMF species were Acaulospora scrobiculata, Glomus macrocarpum and Acaulospora tuberculata, of which the first two appeared in all areas and the third was absent only in PD. These species have great capacity to adapt to changing environments. The occurrence of the species Acaulospora rehmii, Acaulospora sp.3, Glomus etunicatum, Glomus tortuosum, Glomus sp.1, Gigaspora sp.2 and Scutellospora heterogama was low, and were recovered in only one of the study areas. The area with highest density and species occurrence was Past with 414 spores (individuals) and 11 AMF species. The highest and lowest Shannon diversity (H') index were calculated for Past and BM, respectively. Principal component analysis indicated the formation of three groups, the first with MC and BM, the second with PD and AD and the third with only Past. It was concluded that land use changes modify the AMF community, which may increase spore density and diversity, as in the case of Pasture, or reduced, in the case of deforestation.

Keywords : spore density; diversity; root colonization; grassland, no-tillage; Riparian Forest.

        · abstract in Portuguese     · text in Portuguese     · Portuguese ( pdf epdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License