Services on Demand
Journal
Article
Indicators
Cited by SciELO
Access statistics
Related links
Cited by Google
Similars in SciELO
Similars in Google
Share
Química Nova
Print version ISSN 0100-4042On-line version ISSN 1678-7064
Abstract
SILVA, Gecílio P. et al. EVALUATION OF PHYSICAL AND CHEMICAL PROPERTIES OF ELECTRODEPOSITED Ni–W–P OBTAINED IN HULL CELL. Quím. Nova [online]. 2015, vol.38, n.10, pp.1253-1259. ISSN 1678-7064. https://doi.org/10.5935/0100-4042.20150144.
Ni–W–P electrodeposits were synthesized in a Hull cell in order to simulate the obtainment under industrial conditions. Complete coverage of panels was accomplished by applying total currents of 1.0 and 2.0 A. Panels obtained with a current of 1.0 A appeared brighter. The best compositional uniformities, as determined by Energy Dispersive Spectrometer (EDS) occurred in the current density ranges of 0.6 to 3.0 A dm−2 and 1.6 to 6.0 A dm−2 obtained with 1.0 and 2.0 A, respectively. However, the best morphological characteristics, as determined by Scanning Electro Microscope (SEM), were observed in those obtained with a total current of 1.0 A. Analysis of corrosion resistance by Electrochemical Impedance Spectroscopy (EIS) and Potentiodynamic Linear Polarization (PLP) in NaCl have shown significant variations in the amount of corrosion potential, polarization resistance, and even total impedance. The alloys exhibited amorphous character (XRD) and crystallized above 400 °C to Ni and Ni3P phases, and possibly Ni–W, with a subsequent increase in hardness. The results suggest that under industrial conditions, current density variations due to the large and complex geometric shapes of substrates lead to formation of distinct alloys. Furthermore, these materials are potential substitutes for chromium deposits in many applications.
Keywords : electrodeposition; Hull cell; corrosion.
