SciELO - Scientific Electronic Library Online

vol.20 issue3Diallel cross analysis for young plants of brachytic maize (Zea mays L.) varietiesTwo point deterministic model for acquisition of in vitro pollen grain androgenetic capacity based on wheat studies author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Brazilian Journal of Genetics

Print version ISSN 0100-8455On-line version ISSN 1678-4502


TORRES, Giovana A.; PARENTONI, Sidney N.; LOPES, Maurício A.  and  PAIVA, Edilson. A search for RFLP markers to identify genes for aluminum tolerance in maize. Braz. J. Genet. [online]. 1997, vol.20, n.3, pp.-. ISSN 0100-8455.

The objective of this study was to identify restriction fragment length polymorphism (RFLP) markers linked to QTLs that control aluminum (Al) tolerance in maize. The strategy used was bulked segregant analysis (BSA) and the genetic material utilized was an F2 population derived from a cross between the Al-susceptible inbred line L53 and Al-tolerant inbred line L1327. Both lines were developed at the National Maize and Sorghum Research Center - CNPMS/EMBRAPA. The F2 population of 1554 individuals was evaluated in a nutrient solution containing a toxic concentration of Al and relative seminal root length (RSRL) was used as a phenotypic measure of tolerance. The RSRL frequency distribution was continuous, but skewed towards Al-susceptible individuals. Seedlings of the F2 population which scored the highest and the lowest RSRL values were transplanted to the field and subsequently selfed to obtain F3 families. Thirty F3 families (15 Al-susceptible and 15 Al-tolerant) were evaluated in nutrient solution, using an incomplete block design, to identify those with the smallest variances for aluminum tolerance and susceptibility. Six Al-susceptible and five Al-tolerant F3 families were chosen to construct one pool of Al-susceptible individuals, and another of Al-tolerant, herein referred as "bulks", based on average values of RSRL and genetic variance. One hundred and thirteen probes were selected, with an average interval of 30 cM, covering the 10 maize chromosomes. These were tested for their ability to discriminate the parental lines. Fifty-four of these probes were polymorphic, with 46 showing codominance. These probes were hybridized with DNA from the two contrasting bulks. Three RFLPs on chromosome 8 distinguished the bulks on the basis of band intensity. DNA of individuals from the bulks was hybridized with these probes and showed the presence of heterozygous individuals in each bulk. These results suggest that in maize there is a region related to aluminum tolerance on chromosome 8

        · abstract in Portuguese     · text in English


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License