Services on Demand
Journal
Article
Indicators
Cited by SciELO
Access statistics
Related links
Cited by Google
Similars in SciELO
Similars in Google
Share
Brazilian Journal of Nephrology
Print version ISSN 0101-2800On-line version ISSN 2175-8239
Abstract
HANNUN, Pedro Guilherme Coelho and ANDRADE, Luis Gustavo Modelli de. O futuro está chegando: perspectivas promissoras sobre o uso de machine learning no transplante renal. J. Bras. Nefrol. [online]. In press. , pp.-. Epub Oct 18, 2018. ISSN 0101-2800. http://dx.doi.org/10.1590/2175-8239-jbn-2018-0047.
Introdução:
A predição de resultados pós-transplante é clinicamente importante e envolve vários problemas. Os atuais modelos de previsão baseados em padrões estatísticos são muito complexos, difíceis de validar e não fornecem previsões precisas. Machine Learning, é uma técnica estatística que permite que o computador faça previsões futuras usando experiências anteriores, está começando a ser usada para resolver essas questões. No campo do transplante renal, o uso da previsão computacional foi relatado na predição de rejeição crônica de aloenxerto, função tardia do enxerto e sobrevida do enxerto. Este artigo descreve os princípios e etapas de machine learning para fazer uma previsão e realiza uma breve análise das aplicações mais recentes de seu uso na literatura.
Discussão:
Existem evidências convincentes de que as abordagens de machine learning baseadas nos dados do doador e do receptor são melhores para proporcionar melhor prognóstico dos resultados do enxerto do que a análise tradicional. As expectativas imediatas que emergem dessa nova técnica de modelagem de previsão são que ela gerará melhores decisões clínicas baseadas em dados de práticas dinâmicas e locais e aperfeiçoará a alocação de órgãos, bem como o gerenciamento de cuidados pós-transplante. Apesar dos resultados promissores, ainda não há um número substancial de estudos para determinar a viabilidade de sua aplicação em um cenário clínico.
Conclusão:
A forma como lidamos com dados de armazenamento em prontuários eletrônicos de saúde mudará radicalmente nos próximos anos e a machine learning fará parte da rotina clínica diária, seja para prever resultados clínicos ou sugerir um diagnóstico baseado na experiência institucional.
Keywords : Aprendizado de Máquina; Transplante de Rim; Modelos Estatísticos.