SciELO - Scientific Electronic Library Online

 
vol.32 issue1Heuristic for solving capacitor allocation problems in electric energy radial distribution networksAn experimental study of variable depth search algorithms for the quadratic assignment problem author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Pesquisa Operacional

Print version ISSN 0101-7438

Abstract

SASSI, Renato José. An hybrid architecture for clusters analysis: rough setstheory and self-organizing map artificial neural network. Pesqui. Oper. [online]. 2012, vol.32, n.1, pp. 139-164.  Epub Mar 08, 2012. ISSN 0101-7438.  http://dx.doi.org/10.1590/S0101-74382012005000001.

The database of real world contains a huge volume of data and among them there are hidden piles of interesting relations that are actually very hard to find out. The knowledge discovery in databases (KDD) appears as a possible solution to find out such relations aiming at converting information into knowledge. However, not all data presented in the bases are useful to a KDD. Usually, data are processed before being presented to a KDD aiming at reducing the amount of data and also at selecting more relevant data to be used by the system. This work consists in the use of Rough Sets Theory, in order to pre-processing data to be presented to Self-Organizing Map neural network (Hybrid Architecture) for clusters analysis. Experiments' results evidence the better performance using the Hybrid Architecture than Self-Organizing Map. The paper also presents all phases of the KDD process.

Keywords : clusters analysis; rough sets theory; self-organizing map.

        · text in English     · pdf in English