Acessibilidade / Reportar erro

Seismic ray tomography using L1 integral norm

Seismic ray tomography methods are usually associated with substantial computer processing time. The reason for this is that at each step of the iterative inversion process defined by the tomographic method the two-point ray tracing problem must be solved for each source-receiver pair. In order to resolve this, an Euclidean norm (L2 vector norm), commonly used in error functions which are to be minimized in inversion procedures, is substituted by an L1 integral norm, which enables the estimation of model parameters by minimizing the area between observed and calculated traveltime curves that are interpolated (or adjusted) to the data points. Relatively simple mathematical developments and numerical experiments with two-dimensional compressional seismic wave velocity field models showthat L1 integral norm saves an enormous amount of processing time with no significant loss of accuracy. Occasionally, parameters of the model can be better estimated using L1 integral norm than the L2 vector norm that is traditionally utilized in seismic inversion tomography.

seismic ray; tomography; polynomial parameterization; seismic velocity field; two-point ray tracing problem; L2 vector norm; L1 integral norm


Sociedade Brasileira de Geofísica Av. Rio Branco, 156, sala 2510, 20043-900 Rio de Janeiro RJ - Brazil, Tel. / Fax: (55 21) 2533-0064 - São Paulo - SP - Brazil
E-mail: sbgf@sbgf.org.br