SciELO - Scientific Electronic Library Online

 
vol.18 issue2Controlador em modo dual adaptativo robusto para plantas com grau relativo unitário: prova de estabilidadeAprendizado não-supervisionado em redes neurais pulsadas de base radial: um estudo da capacidade de agrupamento para a classificação de pixels author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Sba: Controle & Automação Sociedade Brasileira de Automatica

Print version ISSN 0103-1759

Abstract

FIGUEIREDO, Karla; VELLASCO, Marley; PACHECO, Marco  and  SOUZA, Flávio. Modelo Neuro-Fuzzy Hierárquico Politree com aprendizado por reforço para agentes inteligentes. Sba Controle & Automação [online]. 2007, vol.18, n.2, pp. 234-250. ISSN 0103-1759.  http://dx.doi.org/10.1590/S0103-17592007000200009.

Este trabalho apresenta um novo modelo híbrido neuro-fuzzy para aprendizado automático de ações efetuadas por agentes. O objetivo do modelo é dotar um agente de inteligência, tornando-o capaz de, através da interação com o seu ambiente, adquirir e armazenar o conhecimento e raciocinar (inferir uma ação). Este novo modelo, denominado Reinforcement Learning Neuro-Fuzzy Hierárquico Politree (RL-NFHP), descende dos modelos neuro-fuzzy hierárquicos NFHB, os quais utilizam aprendizado supervisionado e particionamento BSP (Binary Space Partitioning) do espaço de entrada. Com o uso desse método hierárquico de particionamento, associado ao Reinforcement Learning, obteve-se uma nova classe de Sistemas Neuro-Fuzzy (SNF) que executam, além do aprendizado da estrutura, o aprendizado autônomo das ações a serem tomadas por um agente. Essas características representam um importante diferencial em relação aos sistemas de aprendizado de agentes inteligentes existentes. O modelo RL-NFHP foi testado em diferentes problemas benchmark e em uma aplicação de robótica (robô Khepera). Os resultados obtidos mostram o potencial do modelo proposto, que dispensa informações preliminares como número e formato das regras, e número de partições que o espaço de entrada deve possuir.

Keywords : Agentes Inteligentes; Modelos Neuro-Fuzzy; Aprendizado por Reforço; Aprendizado Automático.

        · abstract in English     · text in Portuguese     · pdf in Portuguese