Acessibilidade / Reportar erro

Chaos theory applied to input space representation of autonomous neural network-based short-term load forecasting models

Teoria do caos aplicada à definição do conjunto de entradas de modelos neurais autônomos para previsão de carga em curto prazo

After 1991, the literature on load forecasting has been dominated by neural network based proposals. However, one major risk in using neural models is the possibility of excessive training, i.e., data overfitting. The extent of nonlinearity provided by neural network based load forecasters, which depends on the input space representation, has been adjusted using heuristic procedures. The empirical nature of these procedures makes their application cumbersome and time consuming. Autonomous modeling including automatic input selection and model complexity control has been proposed recently for short-term load forecasting. However, these techniques require the specification of an initial input set that will be processed by the model in order to select the most relevant variables. This paper explores chaos theory as a tool from non-linear time series analysis to automatic select the lags of the load series data that will be used by the neural models. In this paper, Bayesian inference applied to multi-layered perceptrons and relevance vector machines are used in the development of autonomous neural models.

Load Forecasting; Artificial Neural Networks; Input Selection; Chaos Theory; Chaotic Synchronization; Bayesian Inference; Multi-layered Perceptron; Relevance Vector Machines


Sociedade Brasileira de Automática Secretaria da SBA, FEEC - Unicamp, BLOCO B - LE51, Av. Albert Einstein, 400, Cidade Universitária Zeferino Vaz, Distrito de Barão Geraldo, 13083-852 - Campinas - SP - Brasil, Tel.: (55 19) 3521 3824, Fax: (55 19) 3521 3866 - Campinas - SP - Brazil
E-mail: revista_sba@fee.unicamp.br