Acessibilidade / Reportar erro

Bonding interactions of metal clusters [Mn (M= Cu, Ag, Au; n=1-4)] with ammonia. Are the metal clusters adequate as a model of surfaces?

Density Functional (B3LYP/LANL2DZ) calculations for ammonia metal clusters were done in order to obtain bond lengths, M-N stretching vibrational modes, binding energies, Mulliken atomic charges and adiabatic ionization potentials. The results indicate that copper atom forms stronger bonds with ammonia than silver or gold. The bond interaction between Ag n and ammonia is the weakest of all the systems. The bond of the ammonia molecule to the metal clusters can be compared with the pyridine-Mn systems. Both molecules present a donation interaction from the lone-pair of electrons on the nitrogen atom. Mulliken atomic charges show a small charge transfer from the NH3 molecule to the metal atom or cluster, suggestive of a dative bond formation. After the charge transfer from the ammonia molecule, the metal clusters undergo a redistribution of the charge and this could be important for the stabilization of the system. In a surface, the redistribution of the charge should be less significant. In this sense, the use of metal clusters as a model of the surface may be an inadequate model.

metal clusters; bond lengths; M-N stretching vibrational modes; binding energies; Mulliken atomic charges and adiabatic ionization potentials


Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br