Acessibilidade / Reportar erro

A perspective on applications of ligand-field analysis: inspiration from electron paramagnetic resonance spectroscopy of coordination complexes of transition metal ions

This paper describes in a somewhat personal way an overview of the use of electron paramagnetic resonance (EPR) spectroscopy, including high-frequency and -field EPR (HFEPR) to unravel the electronic structure of transition metal ion complexes. The spin Hamiltonian parameters obtained from EPR experiments, namely the g matrix for systems with S =1/2 and the g and D (zero-field splitting) matrices for systems with S > 1/2 provide information on d orbital energy levels. This information can be combined with ligand-field theory (LFT) to provide information on the overall electronic structure of the paramagnetic transition metal complex. As has been discussed by others, LFT is still useful in providing such a quantitative understanding of these complexes, even in the day of advanced computational methods, such as density functional theory (DFT). The discussion is illustrated by examples across the d n configuration.

coordination chemistry; EPR; ligand-field theory; spectroscopy


Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br