SciELO - Scientific Electronic Library Online

 
vol.24 número especialNanostructured Polyelectrolytes Based on SPEEK/TiO2 for Direct Ethanol Fuel Cells (DEFCs)Obtenção de nanocompósitos condutores de montmorilonita/polipirrol: efeito da incorporação do surfactante na estrutura e propriedades índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


Polímeros

versão impressa ISSN 0104-1428

Resumo

LOUREIRO, Felipe Augusto Moro et al. Proton conductive membranes based on poly (styrene-co-allyl alcohol) semi-IPN. Polímeros [online]. 2014, vol.24, n.spe, pp.49-56.  Epub 10-Jun-2014. ISSN 0104-1428.  https://doi.org/10.4322/polimeros.2014.070.

The optimization of fuel cell materials, particularly polymer membranes, for PEMFC has driven the development of methods and alternatives to achieve systems with more adequate properties to this application. The sulfonation of poly (styrene-co-allyl alcohol) (PSAA), using sulfonating agent:styrene ratios of 2:1, 1:1, 1:2, 1:4, 1:6, 1:8 and 1:10, was previously performed to obtain proton conductive polymer membranes. Most of those membranes exhibited solubility in water with increasing temperature and showed conductivity of approximately 10-5 S cm-1. In order to optimize the PSAA properties, especially decreasing its solubility, semi-IPN (SIPN) membranes are proposed in the present study. These membranes were obtained from the diglycidyl ether of bisphenol A (DGEBA), curing reactions in presence of DDS (4,4-diaminodiphenyl sulfone) and PSAA. Different DGEBA/PSAA weight ratios were employed, varying the PSAA concentration between 9 and 50% and keeping the mass ratio of DGEBA:DDS as 1:1. The samples were characterized by FTIR and by electrochemical impedance spectroscopy. Unperturbed bands of PSAA were observed in the FTIR spectra of membranes, suggesting that chemical integrity of the polymer is maintained during the synthesis. In particular, bands involving C-C stretching (1450 cm-1), C=C (aromatic, ~ 3030 cm-1) and C-H (2818 and 2928 cm-1) were observed, unchanged after the synthesis. The disappearance or reduction of the intensity of the band at 916 cm-1, attributed to the DGEBA epoxy ring, is evidenced for all samples, indicating the epoxy ring opening and the DGEBA crosslinking. Conductivity of H3PO4 doped membranes increases with temperature, reaching 10-4 S cm-1.

Palavras-chave : IPN; proton conductive membrane; copolymer; electrochemical impedance spectroscopy.

        · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons