SciELO - Scientific Electronic Library Online

vol.27 número4Production of biodegradable starch nanocomposites using cellulose nanocrystals extracted from coconut fibersInfluence of tribological test on the global conversion of natural composites índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




Links relacionados



versão impressa ISSN 0104-1428versão On-line ISSN 1678-5169


VITORINO, Luísa Sá  e  OREFICE, Rodrigo Lambert. Layer-by-Layer technique employed to construct multitask interfaces in polymer composites. Polímeros [online]. 2017, vol.27, n.4, pp.330-338. ISSN 0104-1428.

The properties of glass fiber-reinforced polymer composites are closely related to the fiber-matrix interface. Interfacial treatments to improve mechanical properties are usually limited to enhance interfacial adhesion. In this work, Layer-by-Layer (LbL) technique was introduced to build a novel interface in polymer composites. Different numbers of bilayers of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate) with carbon nanotubes were deposited through LbL on the surface of woven glass fibers (GFs). Polypropylene composites containing the modified GFs were prepared by compression molding. Thermogravimetric analysis, scanning electron microscopy and Raman spectroscopy proved that multilayers of polymers with carbon nanotubes could be deposited on GFs surface. Mechanical tests on composites with modified GFs revealed an increase in Flexural Modulus and toughness. The overall results attested that the LbL technique can be used to design interfaces with different compositions to perform diverse tasks, such as to improve the stiffness of composites and to encapsulate active nanocomponents.

Palavras-chave : carbon nanotubes; composites; glass fibers; interface; layer-by-layer.

        · texto em Inglês     · Inglês ( pdf )