SciELO - Scientific Electronic Library Online

 
vol.29 número1Production of bioemulsifiers by Yarrowia lipolytica in sea water using diesel oil as the carbon sourceEx-situ bioremediation of Brazilian soil contaminated with plasticizers process wastes índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Brazilian Journal of Chemical Engineering

versão impressa ISSN 0104-6632

Resumo

AHMED, S. A.  e  HELMY, W. A.. Comparative evaluation of Bacillus licheniformis 5A5 and Aloe variegata milk-clotting enzymes. Braz. J. Chem. Eng. [online]. 2012, vol.29, n.1, pp. 69-76. ISSN 0104-6632.  http://dx.doi.org/10.1590/S0104-66322012000100008.

The properties of a milk clotting enzyme (MCE) produced by bacteria (Bacillus licheniformis 5A5) were investigated and compared to those of rennet extracted from a plant (Aloe variegata). Production of MCE by B. licheniformis 5A5 was better in static than in shaken cultures. Maximum activity (98.3 and 160.3 U/ml) of clotting was obtained at 75ºC and 80ºC with bacterial and plant rennet, respectively. In the absence of substrate, the clotting activity of Aloe MCE was found to be less sensitive to heat inactivation up to 80ºC for 75 min, retaining 63.8% of its activity, while bacterial MCE was completely inhibited. CaCl2 stimulated milk clotting activity (MCA) up to 2% and 1.5% for bacterial and plant enzymes. NaCl inhibited MCA for both enzymes, even at low concentration (1%). Plant MCE was more sensitive to NaCl at 3% concentration it retained 30.2% of its activity, whereas bacterial MCE retained 64.1%. Increasing skim milk concentration caused a significant increase in MCA up to 6% for both enzymes. Mn2+ stimulated the activity of bacterial and plant enzymes to 158.6 and 177.9%, respectively. EDTA and PMSF increased the activity of plant MCE by 34.4 and 41.1%, respectively, which is higher than those for the bacterial MCE (19.1 and 20.9%). Some natural materials activated MCE, the highest activation of bacterial MCE (128.1%) was obtained in the presence of Fenugreek (with acid extraction). However Lupine Giza 1 (with neutral extraction) gave the highest activation of plant MCE (137.9%). All extracts from Neem plant increased MCA at range from 105.6% to 136.4%. Plant MCE exhibited much better stability when stored at room temperature (25-30ºC) for 30 days, retaining 51.2% of its activity. Bacterial MCE was highly stabile when stored under freezing (-18ºC), retaining 100% of its activity after 30 days. Moreover, bacterial MCE was highly tolerant to repeated freezing and thawing without loss of activity for 8 months.

Palavras-chave : Bacterial rennet; Plant rennet; Stability; MCE.

        · texto em Inglês     · pdf em Inglês