SciELO - Scientific Electronic Library Online

vol.29 issue3Relationship of lambda and overshoot of step response for a direct synthesis PI controllerCFD-optimization algorithm to optimize the energy transport in pultruded polymer composites author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Brazilian Journal of Chemical Engineering

Print version ISSN 0104-6632


SHARIFI, A.  and  MOHEBBI, A.. Introducing a new formula based on an artificial neural network for prediction of droplet size in venturi scrubbers. Braz. J. Chem. Eng. [online]. 2012, vol.29, n.3, pp.549-558. ISSN 0104-6632.

Droplet size is a fundamental parameter for Venturi scrubber performance. For many years, the correlations proposed by Nukiyama and Tanasawa (1938) and Boll et al. (1974) were used for calculating mean droplet size in Venturi scrubbers with limited operating parameters. This study proposes an alternative approach on the basis of artificial neural networks (ANNs) to determine the mean droplet size in Venturi scrubbers, in a wide range of operating parameters. Experimental data were used to design the ANNs. A neural network was trained based on the liquid to gas ratio (L/G) and throat gas velocity (Vgth), as input parameters, and the Sauter mean diameter (D32) as the desired parameter. The back-propagation learning algorithms were used in the network and the best approach was found. A new formula for the prediction of D32 using the weights of the network was then generated. This formula predicts mean droplet size in Venturi scrubbers more accurately than the correlations of Boll et al. (1974) and Nukiyama and Tanasawa (1938). The Average Absolute Percent Deviation (AAPD) of our formula and the Boll et al. and Nukiyama and Tanasawa correlations for the full ranges of experimental data are 26.04%, 40.19% and 32.99%, respectively.

Keywords : Venturi scrubber; Droplet size; Artificial neural networks (ANNs); Boll correlation; NT correlation.

        · text in English     · English ( pdf epdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License