Acessibilidade / Reportar erro

REVERSIBILITY OF AL-KAOLIN AND AL-HUMIC AGGREGATES MONITORED BY STABLE DIAMETER AND SIZE DISTRIBUTION

Abstract

The reversibility of aggregates during flocculation was investigated. The stable diameter (d) and the power law slope coefficient of the particle size distribution (β) were applied to follow re-formation after breakage. A non-intrusive image-based technique was used for monitoring flocs. Aggregates were formed by adding alum [Al2(SO4)3·18H2O] by the sweep-coagulation mechanism to two synthetic waters, prepared from kaolin (Fluka) and humic acid (Aldrich Chemical). Velocity gradients (G) varied from 20 to 120 s-1 during experiments, and the rupture occurred under controlled conditions. After rupture, the initial condition was reinstated and reversibility analyzed. Results pointed out the irreversibility of breakage for both Al-kaolin and Al-humic flocs. The stable diameter of aggregates after breakage (d2) varied from 157 to 132 µm for Al-humic and from 233 to 123µm for Al-kaolin aggregates, using G from 20 to 120 s-1. β 2 values varied from 1.2 to 4.6 for Al-humic and from 0.6 to 7.7 for Al-kaolin.

Keywords:
Flocculation; Breakage; Image analysis

Brazilian Society of Chemical Engineering Rua Líbero Badaró, 152 , 11. and., 01008-903 São Paulo SP Brazil, Tel.: +55 11 3107-8747, Fax.: +55 11 3104-4649, Fax: +55 11 3104-4649 - São Paulo - SP - Brazil
E-mail: rgiudici@usp.br