Acessibilidade / Reportar erro

Compaction caused by mechanized operations in a Red- Yellow Latosol cultivated with coffee over time

Compactação causada pelas operações mecanizadas em um Latossolo Vermelho-Amarelo cultivado com cafeeiros ao longo do tempo

The main source of soil structure degradation in coffee plantation is the machinery traffic because these operations may cause soil compaction affecting the crop development. This study aimed to generate the load-bearing capacity models for a Red-Yellow Latosol and to determine through the use of these models the soil susceptibility to compaction of the coffee plantation due to the implantation time and the compaction caused by the machinery traffic on the traffic lines located at the top and bottom of the ground. This study was carried out in the EPAMIG Experimental Farm, located at Três Pontas, MG, in coffee plantations (Coffee arabica L.) with 2, 7, 18 and 33 years of establishment. To obtain the load-bearing capacity models, 12 undisturbed soil samples were randomly collected in the 0-3 cm and 15-18 cm layers in the position between the rows for each establishment time of the coffee plantation. It was also randomly collected 10 undisturbed soil samples for each establishment time of the coffee plantations along the tractor traffic lines located at the top and bottom of the ground. These undisturbed soil samples were used in the uniaxial compression tests. The use of the load-bearing capacity models allow to identify the soil susceptibility to compaction due to the implementation time of the coffee plantation and the compaction caused by the machinery traffic on the traffic lines located at the top and bottom of the ground. The percentage of compacted soil samples increases with the establishment time in the layer of 15-18 cm.

Precompression stress; structure degradation; soil physics


Editora da Universidade Federal de Lavras Editora da UFLA, Caixa Postal 3037 - 37200-900 - Lavras - MG - Brasil, Telefone: 35 3829-1115 - Lavras - MG - Brazil
E-mail: revista.ca.editora@ufla.br