Acessibilidade / Reportar erro

Effect of body size, temperature and starvation on oxygen consumption of antarctic krill Euphausia superba

Routine oxygen consumption of krill was investigated as a general measure of its metabolism and assesses the effects of body size, temperature and starvation on the metabolism. No significant difference in whole animal consllmption was detected after 1,3,5 and 7 days of starvation. The response of metabolism of krill to temperature shows a zone of independence, from 0 to 1°C in which the temperature exerts no effect on metabolism. From 1 to 4°C the metabolism increases rapidly in function of temperature. There was a general increase in oxygen consumption with increasing body wet weight. The equation 'between consumption and wet weight is given by Log Q02 = 2.061+ 0.987xLogW, with r = 0.86. The slope of the regression line b=0.987 is less than unity, indicating that oxygen consllmption per unit weight is greater for the smaller than for the larger krill. Average metabolic rate at O°C of 164 krill is 733.24 l, µlO2g(dry wt)-1h-1. The metabolic rate is of 1129.67 J- µlO2g(dry wt)-1h-1 for small krill (13-19 mg dry weight) and 636.16 J- µlO2g(dry wt)-1h-1 for larger animais (160-169 mg dry weight). The metabülism ofkrill is shown to be related to period of adaptation and types of respirometer. Prolonged adaptation period showed adverse effect on metabolism and average oxygen consumption is almost three times higher in respirometers with stirring device than in simple sealed chambers.

Oxygen consumption; Krill; Metabolism; Antarctica; Euphausia superba; Temperature; Starvation


Instituto Oceanográfico da Universidade de São Paulo Praça do Oceanográfico, 191, 05508-120 São Paulo SP Brasil, Tel: (55 11) 3091-6513, Fax: (55 11) 3032-3092 - São Paulo - SP - Brazil
E-mail: amspires@usp.br