SciELO - Scientific Electronic Library Online

 
vol.32 issue3Computational analysis suggests that virulence of Chromobacterium violaceum might be linked to biofilm formation and poly-NAG biosynthesisActin-interacting and flagellar proteins in Leishmania spp.: bioinformatics predictions to functional assignments in phagosome formation author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Genetics and Molecular Biology

Print version ISSN 1415-4757

Abstract

GOMIDE, Janaína et al. Using linear algebra for protein structural comparison and classification. Genet. Mol. Biol. [online]. 2009, vol.32, n.3, pp. 645-651. ISSN 1415-4757.  http://dx.doi.org/10.1590/S1415-47572009000300032.

In this article, we describe a novel methodology to extract semantic characteristics from protein structures using linear algebra in order to compose structural signature vectors which may be used efficiently to compare and classify protein structures into fold families. These signatures are built from the pattern of hydrophobic intrachain interactions using Singular Value Decomposition (SVD) and Latent Semantic Indexing (LSI) techniques. Considering proteins as documents and contacts as terms, we have built a retrieval system which is able to find conserved contacts in samples of myoglobin fold family and to retrieve these proteins among proteins of varied folds with precision of up to 80%. The classifier is a web tool available at our laboratory website. Users can search for similar chains from a specific PDB, view and compare their contact maps and browse their structures using a JMol plug-in.

Keywords : protein classification; contact maps; linear algebra; singular value decomposition; latent semantic indexing.

        · text in English     · pdf in English