SciELO - Scientific Electronic Library Online

 
vol.34 issue4Relative contribution of effects included in contemporary groups for adjusted and actual 120-day and 210-day weights in Nelore cattle in BrazilChromosomal localization of the 18S-28S and 5S rRNA genes and (TTAGGG)n sequences of butterfly lizards (Leiolepis belliana belliana and Leiolepis boehmei, Agamidae, Squamata) author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Genetics and Molecular Biology

Print version ISSN 1415-4757

Abstract

SILVA, Fabyano Fonseca et al. Zero-inflated Poisson regression models for QTL mapping applied to tick-resistance in a Gyr x Holstein F2 population. Genet. Mol. Biol. [online]. 2011, vol.34, n.4, pp. 575-582.  Epub Oct 28, 2011. ISSN 1415-4757.  http://dx.doi.org/10.1590/S1415-47572011005000049.

Nowadays, an important and interesting alternative in the control of tick-infestation in cattle is to select resistant animals, and identify the respective quantitative trait loci (QTLs) and DNA markers, for posterior use in breeding programs. The number of ticks/animal is characterized as a discrete-counting trait, which could potentially follow Poisson distribution. However, in the case of an excess of zeros, due to the occurrence of several noninfected animals, zero-inflated Poisson and generalized zero-inflated distribution (GZIP) may provide a better description of the data. Thus, the objective here was to compare through simulation, Poisson and ZIP models (simple and generalized) with classical approaches, for QTL mapping with counting phenotypes under different scenarios, and to apply these approaches to a QTL study of tick resistance in an F2 cattle (Gyr x Holstein) population. It was concluded that, when working with zero-inflated data, it is recommendable to use the generalized and simple ZIP model for analysis. On the other hand, when working with data with zeros, but not zero-inflated, the Poisson model or a data-transformation-approach, such as square-root or Box-Cox transformation, are applicable.

Keywords : dairy; cattle; tick infestation; QTL regression; generalized linear model.

        · text in English     · pdf in English