SciELO - Scientific Electronic Library Online

 
vol.15 issue4Carboxylated nitrile butadiene rubber/hybrid filler compositesEffects of processing parameters on microstructure and ultimate tensile strength of thixoformed AM60B magnesium alloy author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Materials Research

Print version ISSN 1516-1439

Abstract

PELISSER, Fernando; MONTEDO, Oscar Rubem Klegues; GLEIZE, Philippe Jean Paul  and  ROMAN, Humberto Ramos. Mechanical properties of recycled PET fibers in concrete. Mat. Res. [online]. 2012, vol.15, n.4, pp. 679-686.  Epub July 31, 2012. ISSN 1516-1439.  http://dx.doi.org/10.1590/S1516-14392012005000088.

Fiber-reinforced concrete represents the current tendency to apply more efficient crack-resistant concrete. For instance, polyethylene terephthalate (PET) is a polyester polymer obtained from recyclable bottles; it has been widely used to produce fibers to obtain cement-based products with improved properties. Therefore, this paper reports on an experimental study of recycled-bottle-PET fiber-reinforced concrete. Fibers with lengths of 10, 15 and 20 mm and volume fractions of 0.05, 0.18 and 0.30% related to the volume of the concrete were used. Physical and mechanical characterization of the concrete was performed, including the determination of compressive strength, flexural strength, Young's modulus and fracture toughness as well as analysis using mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM). Flexure and impact tests were performed after 28 and 150 days. No significant effect of the fiber addition on the compressive strength and modulus of elasticity was observed. However, the Young's modulus was observed to decrease as the fiber volume increased. At 28 days, the concrete flexural toughness and impact resistance increased with the presence of PET fibers, except for the 0.05 vol.% sample. However, at 150 days, this improvement was no longer present due to recycled-bottle-PET fiber degradation in the alkaline concrete environment, as visualized by SEM observations. An increase in porosity also has occurred at 365 days for the fiber-reinforced concrete, as determined by MIP.

Keywords : fiber-reinforced concrete; recycled PET; synthetic fibers; mechanical properties.

        · text in English     · pdf in English