SciELO - Scientific Electronic Library Online

vol.15 issue5Consolidation of the Cu46Zr42Al7Y5 amorphous ribbons and powder alloy by hot extrusionChemistry and tensile properties of a recycled AA7050 via spray forming and ECAP/E author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Materials Research

Print version ISSN 1516-1439


CARDOSO, Katia Regina; TRAVESSA, Dilermando Nagle; JORGE JUNIOR, Alberto Moreira  and  BOTTA, Walter José. Microstructure evolution of AA7050 Al alloy during Equal-Channel Angular Pressing. Mat. Res. [online]. 2012, vol.15, n.5, pp.732-738.  Epub Aug 30, 2012. ISSN 1516-1439.

High strength AA7050 aluminum alloy was processed by ECAP through route A in the T7451 condition. Samples were processed at 423 K, with 1 and 3 passes. The resulting microstructure was evaluated by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The phases were identified by X-ray diffraction (XRD) using monochromatic Cu Kα radiation. Rockwell B hardness and tensile tests were performed for assessment of mechanical properties. The microstructure was refined by the formation of deformation bands, with dislocation cells and elongated subgrains, with an average width of 240 nm, inside these bands. The number of deformation bands increased with the number of passes. A reduction of precipitates size was observed with increase in the number of passes, when compared to initial condition, probably resulting from particle fragmentation during ECAP. After three passes the precipitates tend to a more equiaxed morphology and have sizes smaller than 10 nm. Phases Η' and Η coexist in the microstructure, but Η is the dominant phase, mainly after three passes. The hardness of alloy after the first pass of ECAP is almost equal to the initial condition. After three passes the hardness showed a slight reduction which must be result from recovery process. There was a slight improvement in the yield strength and elongation after one pass, when compared to the initial T7451 condition. The improvement in the ultimate tensile strength was less significant.

Keywords : severe plastic deformation; ECAP; aluminum alloy.

        · text in English     · English ( pdf epdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License