Acessibilidade / Reportar erro

Numerical approach of the steel-concrete bond behavior using pull-out models

ABSTRACT

This paper deals with the analysis of monotonic loading behavior in pull-out tests. The main objective is to obtain a reliable numerical model to represent the steel-concrete bond behavior using previously obtained experimental results. The tests were performed in RILEM pull-out specimen using 10 mm steel bar and concrete with compressive strength of 30 MPa. The numerical study used Ansys® software, based on FEM (Finite Elements Method). The numerical simulation adopted non-linear constitutive relationships to represent the behavior of both concrete and steel. A contact surface composed of special finite elements modeled the interface between the concrete and the steel bar, allowing a steel–concrete slip. The numerical analysis performed with variation of the main parameters of the software permitted determining the best ones, and choosing them to obtain a good representation of the bond phenomena. The numerical results had a good agreement with the experimental results. Both linear and non-linear approaches represented the pre-peak behavior, however only the non-linear model gave the best approach for the pull-out force. In addition, the numerical results had shown the simplified model can be used to represent the steel-concrete bond behavior reducing the processing time for current structures analysis.

Keywords
bond strength; pull-out tests; numerical approach; contact surface; finite element method

Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro, em cooperação com a Associação Brasileira do Hidrogênio, ABH2 Av. Moniz Aragão, 207, 21941-594, Rio de Janeiro, RJ, Brasil, Tel: +55 (21) 3938-8791 - Rio de Janeiro - RJ - Brazil
E-mail: revmateria@gmail.com