SciELO - Scientific Electronic Library Online

vol.13 issue5Creatine supplementation and strength training: alterations in the resultant of dynamic maximum strength and anthropometric variables in college students submitted to 8 weeks of strength training (hypertrophy)Conconi test adapted to aquatic bicycle author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Revista Brasileira de Medicina do Esporte

Print version ISSN 1517-8692On-line version ISSN 1806-9940


SOUSA, Catarina de Oliveira et al. Electromyograhic activity in squatting at 40°, 60° and 90° knee flexion positions. Rev Bras Med Esporte [online]. 2007, vol.13, n.5, pp.310-316. ISSN 1517-8692.

The aim of this study was to compare the electromyographic (EMG) activity of the femoris rectus, femoris biceps, tibialis anterior and soleus muscles in squatting, associating the trunk in erect position with two angles of knee flexion (40° and 60°) and the trunk at 45° flexion with three angles of knee flexion (40°, 60° and 90°). All associations were performed with and without additional load (10 kg). The sample was composed of 12 healthy individuals with mean age of 21.1 ± 2.5 years and weight of 62.8 ± 7.4 kg. The EMG of the cited muscles was isometrically registered in 10 squatting positions. For statistical analysis, Friedman Two-Way ANOVA and the Newman-Keuls Post-Hoc test were used. The results showed co-activation between the femoris rectus and femoris biceps muscles with the trunk in flexion and at 40° of knee flexion and between the femoris rectus and soleus muscles in the other positions considered (p < 0.05). It was also possible to observe co-activation between tibialis anterior and femoris biceps muscles with knee at 40° and 60° of flexion, with the trunk erect and in flexion and between the tibialis anterior and soleus muscles in the other positions (p < 0.05). Concerning isolated muscular activation, higher knee flexion in squatting was an important factor to greater muscles activation, except for the soleus. Trunk position and the additional load of 10 kg have influenced in the muscular activation of the femoris rectus at 60° of knee flexion, in which the erect trunk provided more activation. The femoris biceps presented greater activation when the knee was in 40° of flexion and the trunk flexioned. The co-activation between the femoris rectus and biceps with the trunk in flexion, and between the femoris rectus and soleus in the other positions, lead to new possibilities of exercises in rehabilitation.

Keywords : Biomechanics; Rehabilitation; Muscular activity; Closed kinetic chain.

        · abstract in Portuguese     · text in English | Portuguese     · English ( pdf epdf ) | Portuguese ( pdf epdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License