Acessibilidade / Reportar erro

A rough terrain traction control technique for all-wheel-drive mobile robots

Traction control is a critical aspect of mobile robots that need to traverse rough terrain, avoiding excessive slip - which may cause the terrain to collapse locally and trap the robot wheels - and guaranteeing an adequate trajectory and speed control while reducing the power requirements. Traction control of all-wheel-drive robots in rough terrain was originally motivated by space exploration, such as in the case of the Mars Exploration Rovers. However, such technology is also needed in our planet, in particular in the Amazon region. This is the case of the Hybrid Environmental Robot (HER), a 4-wheel-drive mobile robot with independent suspensions, under development at CENPES/PETROBRAS. This robot is susceptible to changing terrain conditions, facing slippery soil and steep slopes. In this work, a new traction control scheme is proposed to allow HER to maintain a desired velocity while minimizing power requirements and slippage, considering motor saturation and avoiding flip-over dynamic instability. The proposed technique is based on a redundant computed torque control scheme, analytically optimized to minimize power requirements. Simulations are performed for rough terrain conditions with 2D-profile, considering the general case of different tire-terrain contact angles at each wheel. It is found that the control scheme is able to analytically predict in real time the ideal torques required by each independent wheel to maintain the desired speed, even on very rough terrain, minimizing when possible the power consumption. The method is applicable to the 3D case as long as the roll angle of the robot chassis does not vary too much compared to the robot pitch angle.

traction control; mobile robot; rough terrain; all-wheel drive


Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM Av. Rio Branco, 124 - 14. Andar, 20040-001 Rio de Janeiro RJ - Brazil, Tel.: +55 21 2221-0438, Fax: +55 21 2509-7129 - Rio de Janeiro - RJ - Brazil
E-mail: abcm@abcm.org.br