Acessibilidade / Reportar erro

A comparative study of the application of differential evolution and simulated annealing in radiative transfer problems

The radiative transfer phenomenon is modeled by an integro-differential equation known as Boltzmann equation. This equation describes mathematically the interaction of the radiation with the participating medium, i.e., a medium that may absorb, scatter and emit radiation. In this sense, this work presents a study regarding the estimation of radiative properties in a one-dimensional participating medium by using two optimization heuristic methods, namely Simulated Annealing and Differential Evolution. First, a review of these two optimization techniques is presented. The direct radiative transfer problem solution, which is required for both optimization techniques, is obtained by using the Collocation Method. Finally, case-studies are presented aiming at illustrating the efficiency of these methodologies in the treatment of inverse radiative transfer problems.

inverse problem; radiative transfer; Differential Evolution; Simulated Annealing


Associação Brasileira de Engenharia e Ciências Mecânicas - ABCM Av. Rio Branco, 124 - 14. Andar, 20040-001 Rio de Janeiro RJ - Brazil, Tel.: +55 21 2221-0438, Fax: +55 21 2509-7129 - Rio de Janeiro - RJ - Brazil
E-mail: abcm@abcm.org.br