SciELO - Scientific Electronic Library Online

 
vol.34 issue3Slip-line metal cutting model with negative rake angleFlexural-torsional vibration analysis of axially loaded thin-walled beam author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Journal of the Brazilian Society of Mechanical Sciences and Engineering

Print version ISSN 1678-5878

Abstract

MURTHY, K. Sundara  and  RAJENDRAN, I.. Optimization of end milling parameters under minimum quantity lubrication using principal component analysis and grey relational analysis. J. Braz. Soc. Mech. Sci. & Eng. [online]. 2012, vol.34, n.3, pp. 253-261. ISSN 1678-5878.  http://dx.doi.org/10.1590/S1678-58782012000300005.

Machining is the major reliable practice in accomplishment of metal cutting industries. The accelerated growing competition demands top superior and large quantity with low cost products. Metal working fluids have significant fragment of manufacturing cost and causes ecological impacts and health problems. This work attempts to advance a competent machining alignment with no ecological impacts. The prediction of quality characteristics and enhancement of machining field are consistently accepting great interest in machining sectors to compress the accomplishment costs. In this paper, GA based ANN prediction model proposes to envisage the quality characteristics of surface roughness and tool wear. The comparison of predicted and experimental values acknowledges the precision of the model. The end milling experiments are conducted beneath minimum quantity lubrication. This paper as well deals with the multiple objective optimization with principal component analysis, grey relational analysis and Taguchi method. ANOVA was carried out to determine each parameter contribution percentage on quality characteristics. The results show that cutting speed is the most influencing parameter followed by feed velocity, lubricant flow rate and depth of cut. The confirmation tests acknowledge that the proposed multiple-objective methodology is able in determining optimum machining parameters for minimum surface roughness and tool wear.

Keywords : end milling; MQL; principal component analysis; grey relational analysis; optimization.

        · text in English     · pdf in English