SciELO - Scientific Electronic Library Online

 
vol.10 issue2Spectral characteristics of the hippocampal LFP during contextual fear conditioning author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Einstein (São Paulo)

Print version ISSN 1679-4508

Abstract

SANTO, Rafael do Espírito. Principal Component Analysis applied to digital image compression. Einstein (São Paulo) [online]. 2012, vol.10, n.2, pp. 135-139. ISSN 1679-4508.  http://dx.doi.org/10.1590/S1679-45082012000200004.

OBJECTIVE: To describe the use of a statistical tool (Principal Component Analysis – PCA) for the recognition of patterns and compression, applying these concepts to digital images used in Medicine. METHODS: The description of Principal Component Analysis is made by means of the explanation of eigenvalues and eigenvectors of a matrix. This concept is presented on a digital image collected in the clinical routine of a hospital, based on the functional aspects of a matrix. The analysis of potential for recovery of the original image was made in terms of the rate of compression obtained. RESULTS: The compressed medical images maintain the principal characteristics until approximately one-fourth of their original size, highlighting the use of Principal Component Analysis as a tool for image compression. Secondarily, the parameter obtained may reflect the complexity and potentially, the texture of the original image. CONCLUSION: The quantity of principal components used in the compression influences the recovery of the original image from the final (compacted) image.

Keywords : Principal component analysis; Eigenvalues; Eigenvectors; Image compressing; Patters; Dimensionality reduction.

        · abstract in Portuguese     · text in English | Portuguese     · pdf in English | Portuguese