SciELO - Scientific Electronic Library Online

vol.13 issue1Reproductive studies of Anchoa marinii Hildebrand, 1943 (Actinopterygii: Engraulidae) in the nearby-coastal area of Mar Chiquita coastal lagoon, Buenos Aires, ArgentinaBile acids as potential pheromones in pintado catfish Pseudoplatystoma corruscans (Spix & Agassiz, 1829): eletrophysiological and behavioral studies author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




Related links


Neotropical Ichthyology

Print version ISSN 1679-6225


LORO, Vania Lucia et al. Glyphosate-based herbicide affects biochemical parameters in Rhamdia quelen (Quoy & Gaimard, 1824 and) Leporinus obtusidens (Valenciennes, 1837). Neotrop. ichthyol. [online]. 2015, vol.13, n.1, pp.229-236. ISSN 1679-6225.

Rhamdia quelen (silver catfish) and Leporinus obtusidens (piava) were exposed to a commercial formulation Roundup(r), a glyphosate-based herbicide at concentrations of 0.2 or 0.4 mg/L for 96 h. The effects of the herbicide were analyzed on the alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and glucose in plasma, glucose and protein in the mucus layer, nucleotide hydrolysis in the brain, and protein carbonyl in the liver. The parameters were chosen, owing to a lack of information concerning integrated analysis, considering oxidative damage parameters, liver damage, and effects on the mucus layer composition and triphosphate diphosphohydrolase (NTPDase) activities. Plasmatic glucose levels were reduced in both species, whereas the transaminase activities (ALT and AST) increased after exposure to the herbicide. Herbicide exposure increased protein and glucose levels in the mucus layer in both species. There was a reduction in both NTPDase and ecto-5'-nucleotidase activity in the brain of piava, and increased enzyme activity in silver catfish at both concentrations tested. The species showed an increase in protein carbonyl in the liver after exposure to both concentrations of the glyphosate. Our results demonstrated that exposure to Roundup(r) caused liver damage, as evidenced by increased plasma transaminases and liver protein carbonyl in both of the fish species studied. The mucus composition changed and hypoglycemia was detected after Roundup(r) exposure in both species. Brain nucleotide hydrolysis showed a different response for each fish species studied. These parameters indicated some important and potential indicators of glyphosate contamination in aquatic ecosystems.

Keywords : Fish; Mucus; Nucleotidases; Plasma; Protein carbonyl.

        · abstract in Portuguese     · text in English     · English ( pdf )