Acessibilidade / Reportar erro

Numerical forensic model for the diagnosis of a full-scale RC floor

The paper presents the results of an investigation on the diagnosis and assessment of a full-scale reinforced concrete floor utilizing a 3-D forensic model developed in the framework of plasticity-damage approach. Despite the advancement in nonlinear finite element formulations and models, there is a need to verify models on nontrivial challenging structures. Various standards on strengthening existing structures consider numerical diagnosis as a major stage involving safety and economical aspects. Accordingly, model validity is a major issue that should preferably be examined against realistic large-scale tests. This was done in this study by investigating a one-story joist floor with wide shallow beams supported on columns. The surveyed cracking patterns on the entire top side of the floor were reproduced by the forensic model to a reasonable degree in terms of orientation and general location. Concrete principal plastic tensile strain was shown to be a good indirect indicator of cracking patterns. However, identifying the underlying reasons of major cracks in the floor required correlating with other key field parameters including deflections, and internal moments. Therefore, the ability of the forensic model to reproduce the surveyed damage state of the floor provided a positive indication on the material models, spatial representation, and parameter selection. Such models can be used as forensic tools for assessing the existing conditions as required by various standards and codes.

nonlinear finite element; reinforced concrete; forensic; cracking; numerical model; diagnosis; existing structures


Individual owner www.lajss.org - São Paulo - SP - Brazil
E-mail: lajsssecretary@gmsie.usp.br