SciELO - Scientific Electronic Library Online

 
vol.18 issue3An attempt to link the Brazilian Height System to a World Height SystemHybrid classification: pixel by pixel and object based to monitor the surface conditions of road pavements author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Boletim de Ciências Geodésicas

On-line version ISSN 1982-2170

Abstract

QUINTERO, C. A. B.; ESCOBAR, I. P.  and  PONTE-NETO, C. F.. Applications of Voronoi and Delaunay Diagrams in the solution of the geodetic boundary value problem. Bol. Ciênc. Geod. [online]. 2012, vol.18, n.3, pp. 378-390. ISSN 1982-2170.  http://dx.doi.org/10.1590/S1982-21702012000300003.

Voronoi and Delaunay structures are presented as discretization tools to be used in numerical surface integration aiming the computation of geodetic problems solutions, when under the integral there is a non-analytical function (e. g., gravity anomaly and height). In the Voronoi approach, the target area is partitioned into polygons which contain the observed point and no interpolation is necessary, only the original data is used. In the Delaunay approach, the observed points are vertices of triangular cells and the value for a cell is interpolated for its barycenter. If the amount and distribution of the observed points are adequate, gridding operation is not required and the numerical surface integration is carried out by point-wise. Even when the amount and distribution of the observed points are not enough, the structures of Voronoi and Delaunay can combine grid with observed points in order to preserve the integrity of the original information. Both schemes are applied to the computation of the Stokes' integral, the terrain correction, the indirect effect and the gradient of the gravity anomaly, in the State of Rio de Janeiro, Brazil area.

Keywords : 2-D tessellation; Delaunay Triangulation; Voronoi Cells; Geodesy; Stokes' Integral.

        · abstract in Portuguese     · text in English     · pdf in English