SciELO - Scientific Electronic Library Online

 
vol.22 número3AVALIAÇÃO DA USABILIDADE DE INTERFACES DE SISTEMAS VGI NA TAREFA DE INSERÇÃO DE FEIÇÕES.APLICAÇÃO DA TÉCNICA PPP PARA A OBTENÇÃO DO POSICIONAMENTO NA CABOTAGEM NO BRASIL: ESTUDO DE CASO índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


Boletim de Ciências Geodésicas

versão impressa ISSN 1413-4853versão On-line ISSN 1982-2170

Resumo

SCHMIDT, Marcio Augusto Reolon  e  BARBOSA, Gustavo Rodrigues. Use of artificial neural networks in initial ponderation of AHP techniques applied to analysis of watershed vulnerability. Bol. Ciênc. Geod. [online]. 2016, vol.22, n.3, pp.511-525. ISSN 1413-4853.  http://dx.doi.org/10.1590/S1982-21702016000300029.

In many decision problems, the information provided by decision makers is often inaccurate or uncertain due to the time constrains, the lack of data or capacity to dealing with available information. In order to overcome these difficulties, some studies have shown the application of the technique Analytical Hierarchic Ponderation (AHP) in the geosciences. This technique breaks a complicated decision problem into a hierarchy of sub-problems, makes comparisons pairwise of the input information and from the results, allow estimating weights for each considered variable. However, this study recognize that the weakest point of the method is the initial weighting of the input variables, as the expert knowledge can be subjective and relative importance of the elements of analysis may vary. In the literature, there is no discussion about the effects of these weights and their variation on final weights. Therefore, this research evaluates different scenarios, considering the environmental context of vulnerability, comparing the adjustment of initial ponderation values of common AHP in relation of expert's ponderation and in relation to initial weights obtained from neural network in order to minimize the subjectivity of the analysis process

Palavras-chave : Artificial Neural Networks; Fuzzy AHP; Environmental Vulnerability.

        · resumo em Português     · texto em Português     · Português ( pdf )