SciELO - Scientific Electronic Library Online

 
vol.2 issue2The role of antioxidant on propellant binder reactivity during thermal agingModeling elastic and thermal properties of 2.5D carbon fiber and carbon/SiC hybrid matrix composites by homogenization method author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Journal of Aerospace Technology and Management

Print version ISSN 1984-9648On-line version ISSN 2175-9146

Abstract

KAWAMOTO, Aparecida M. et al. Synthesis of a boron modified phenolic resin. J. Aerosp. Technol. Manag. [online]. 2010, vol.2, n.2, pp.169-182. ISSN 1984-9648.  http://dx.doi.org/10.5028/jatm.2010.02027610.

Phenolic resin has long been used as matrix for composites mainly because of its flame retardant behavior and high char yield after pyrolysis, which results in a self supporting structure. The addition of ceramic powders, such as SiC and B4C, as fillers to the phenolic resin, results in better thermo-oxidative stability, but as drawbacks, it has poor homogeneity, adhesion and processing difficulties during molding of the composites. The addition of single elements, such as boron, silicon and phosphorus in the main backbone of the thermo-set resin is a new strategy to obtain special high performance resins, which results in higher mechanical properties, avoiding the drawbacks of simply adding fillers, which results in enhanced thermo-oxidative stability compared to conventional phenol-formaldehyde resins. Therefore, the product can have several applications, including the use as ablative thermal protection for thermo-structural composites. This work describes the preparation of a boron-modified phenolic resin (BPR) using salicyl alcohol and boric acid. The reaction was performed in refluxing toluene for a period of four hours, which produced a very high viscosity amber resin in 90% yield.The final structure of the compound, the boric acid double, substituted at the hydroxyl group of the aromatic ring, was determined with the help of the Infrared Spectroscopy, 1H-NMR, TGA-DSC and boron elemental analysis. The absorption band of the group B-O at 1349 cm-1 can be visualized at the FT-IR spectrum. 1H-NMR spectra showed peaks at 4.97-5.04 ppm and 3.60-3.90 ppm assigned to belong to CH2OH groups from the alcohol. The elemental analysis was also performed for boron determination.The product has also been tested in carbon and silicon fibers composite for the use in thermal structure. The results of the tests showed composites with superior mechanical properties when compared with the conventional phenolic resin.

Keywords : Phenolic resin; Boron; Thermal protection; Oxidizing agents.

        · text in English     · English ( pdf )