SciELO - Scientific Electronic Library Online

 
vol.70 número4Validation of a simplified computer simulation method for plastic forming of metals by conventional tensile testsHydrometallurgical extraction of Al and Si from kaolinitic clays índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

Compartilhar


REM - International Engineering Journal

versão On-line ISSN 2448-167X

Resumo

PEREIRA, Antonio Clareti  e  BARBOSA, Viviane da Silva Borges. Effectiveness acidic pre-cleaning for copper-gold ore. REM, Int. Eng. J. [online]. 2017, vol.70, n.4, pp.445-450. ISSN 2448-167X.  http://dx.doi.org/10.1590/0370-44672016700126.

The presence of copper-bearing minerals is known to bring on many challenges during the cyanidation of gold ore, like high consumption of cyanide and low extraction of metal, which are undesirable impacts on the auriferous recovery in the subsequent process step. The high copper solubility in cyanide prevents the direct use of classical hydrometallurgical processes for the extraction of gold by cyanidation. Additionally, the application of a conventional flotation process to extract copper is further complicated when it is oxidized. As a result, an acid pre-leaching process was applied in order to clean the ore of these copper minerals that are cyanide consumers. The objective was to evaluate the amount of soluble copper in cyanide before and after acidic cleaning. From a gold ore containing copper, the study selected four samples containing 0.22%, 0.55%, 1.00% and 1.36% of copper. For direct cyanidation of the ore without pre-treatment, copper extraction by cyanide complexing ranged from 8 to 83%. In contrast, the pre-treatment carried out with sulfuric acid extracted 24% to 99% of initial copper and subsequent cyanidation extracted 0.13 to 1.54% of initial copper. The study also showed that the copper contained in the secondary minerals is more easily extracted by cyanide (83%), being followed by the copper oxy-hydroxide minerals (60%), while the copper contained in the manganese oxide is less complexed by cyanide (8% a 12%). It was possible to observe that minerals with low acid solubility also have low solubility in cyanide. Cyanide consumption decreased by about 2.5 times and gold recovery increased to above 94% after acidic pre-cleaning.

Palavras-chave : copper; mineral; gold; acid cleaning; cyanidation; copper-gold ore.

        · texto em Inglês     · Inglês ( pdf )