Acessibilidade / Reportar erro

An Efficient Protocol for Facile Synthesis of New 5-Substituted-1H-Tetrazole Derivatives Using Copper-Doped Silica Cuprous Sulfate (CDSCS) as Heterogeneous Nano-Catalyst

Abstract

A facile and highly efficient protocol for synthesis of new 5-substituted-1H-tetrazoles derivatives using copper-doped silica cuprous sulfate (CDSCS) is described. In this method, the cycloaddition reaction of sodium azide with structurally diverse nitriles involving bioactive N-heterocyclic cores exploiting CDSCS in refluxing H2O/i-PrOH (1:1, v/v) furnishes the corresponding 5-substituted-1H-tetrazoles in good to excellent yields (up to 93%). The influence of parameters effective in progress of reaction including solvent type, temperature and catalyst was studied and discussed. In this protocol, CDSCS was proved to be an efficient heterogeneous nano-catalyst to easily achieve the new tetrazole derivatives. The advantages of CDSCS in current protocol known are its cheapness, thermal and chemical stability, ease of recyclability and reusability for several consecutive runs without significant decline in its reactivity.

Keywords:
azide; CDSCS; cycloaddition; nitrile; 1H-tetrazole


Introduction

Tetrazole and its derivatives are an important class of N-heterocyclic compounds exhibiting widespread applications.11 Butler, R. N. In Comprehensive Heterocyclic Chemistry II, vol. 4; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., eds.; Pergamon: Oxford, 1996, p. 897.,22 Ostrovskii, V. A.; Koldobskii, G. I.; Trifonov, R. E. In Comprehensive Heterocyclic Chemistry III, vol. 6; Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K., eds.; Elsevier: Oxford, 2008, p. 257. Tetrazoles are extensively applied in different industries as instance: stabilizers in photography and photo imaging,33 Jursic, B. S.; Leblanc, B. W.; J. Heterocycl. Chem. 1998, 35, 405 and references cited therein.,44 Koldobskii, G. I.; Ostrovskii, V. A.; Popavskii, V. S.; Khim. Geterotsikl. Soedin. 1981, 10, 1299. explosives in rocket propellants,55 Zhao-Xu, C.; Heming, X.; Int. J. Quantum Chem. 2000, 79, 350.

6 Kharaghiosoff, K.; Klapotke, T. M.; Mayer, P.; Piotrowski, H.; Polborn, K.; Willer, R. L.; Weigand, J. J.; J. Org. Chem. 2006, 71, 1295.
-77 Hammerl, A.; Hiskey, M. A.; Holl, G.; Klapoetke, T. M.; Polborn, K.; Stierstorfer, J.; Weigand, J. J.; Chem. Mater. 2005, 17, 3784. chelating agents in coordination chemistry,88 Downard, A. J.; Steel, P. J.; Steenwijk, J.; Aust. J. Chem. 1995, 48, 1625.,99 Mukhopadhyay, S.; Lasri, J.; Guedes da Silva, M. F. C.; Januário Charmier, M. A.; Pombeiro, A. J. L.; Polyhedron 2008, 27, 2883. plant growth regulators, herbicides, fungicides in agriculture,33 Jursic, B. S.; Leblanc, B. W.; J. Heterocycl. Chem. 1998, 35, 405 and references cited therein.,1010 McManus, J. M.; Herbst, R. M.; J. Org. Chem. 1959, 24, 1464. and anti-wears and frictions in lubricants.1111 Li, J.; Ren, T.; Liu, H.; Wang, D.; Liu, W.; Wear 2000, 246, 130. Additionally, tetrazoles can be served as bioisosteres for the carboxylic acids.1212 Herr, R. J.; Bioorg. Med. Chem. 2002, 10, 3379.

13 Meanwell, N. A.; J. Med. Chem. 2011, 54, 2529.
-1414 Pegklidou, K.; Koukoulitsa, C.; Nicolaou, I.; Demopoulos, V. J.; Bioorg. Med. Chem. 2010, 18, 2107. Replacing a carboxyl group with tetrazolyl moiety extensively improves the metabolic stability, bioavailability and cell permeability of a drug molecule.1515 Holland, G. F.; Pereira, J. N.; J. Med. Chem. 1967, 10, 149.,1616 Marvi, O.; Alizadeh, A.; Zarrabi, S.; Bull. Korean Chem. Soc. 2011, 32, 4001. When increase in the lipophilicity factor (log P) for a drug molecule involving carboxylic moiety is desired, one can replace the carboxylic moiety with tetrazole as a more lipophilic bioisostere. Consequently, tetrazoles are widely applied in synthesis of many well-known drugs like losartan,1717 Aureggi, V.; Sedelmeier, G.; Angew. Chem., Int. Ed. 2007, 46, 8440.

18 Alonen, A.; Finel, M.; Kostiainen, R.; Biochem. Pharmacol. 2008, 76, 763.
-1919 Alonen, A.; Jansson, J.; Kallonen, S.; Kiriazis, A.; Aitio, O.; Finel, M.; Kostiainen, R.; Bioorg. Chem. 2008, 36, 148. candesartan,1818 Alonen, A.; Finel, M.; Kostiainen, R.; Biochem. Pharmacol. 2008, 76, 763.,1919 Alonen, A.; Jansson, J.; Kallonen, S.; Kiriazis, A.; Aitio, O.; Finel, M.; Kostiainen, R.; Bioorg. Chem. 2008, 36, 148. zolarsartan1818 Alonen, A.; Finel, M.; Kostiainen, R.; Biochem. Pharmacol. 2008, 76, 763.,1919 Alonen, A.; Jansson, J.; Kallonen, S.; Kiriazis, A.; Aitio, O.; Finel, M.; Kostiainen, R.; Bioorg. Chem. 2008, 36, 148. and valsartan.1717 Aureggi, V.; Sedelmeier, G.; Angew. Chem., Int. Ed. 2007, 46, 8440. In addition, tetrazoles exhibit varied biological activities such as antihypertensive,1717 Aureggi, V.; Sedelmeier, G.; Angew. Chem., Int. Ed. 2007, 46, 8440.

18 Alonen, A.; Finel, M.; Kostiainen, R.; Biochem. Pharmacol. 2008, 76, 763.

19 Alonen, A.; Jansson, J.; Kallonen, S.; Kiriazis, A.; Aitio, O.; Finel, M.; Kostiainen, R.; Bioorg. Chem. 2008, 36, 148.

20 Bräuner-Osborne, H.; Egebjerg, J.; Nielsen, E. O.; Madsen, U.; Krogsgaard-Larsen, P.; J. Med. Chem. 2000, 43, 2609.
-2121 Lusina, M.; Cindrić, T.; Tamaić, J.; Peko, M.; Pozaić, L.; Musulin, N.; Int. J. Pharm. 2005, 291, 127. antibacterial,2222 Narasaiaha, T.; Subba Raoa, D.; Rasheeda, S.; Madhavaa, G.; Srinivasulua, D.; Brahma Naidub, P.; Naga Rajua, C.; Der Pharm. Lett. 2012, 4, 854.,2323 Andrus, A.; Partridge, B.; Heck, J. V.; Christensen, B. G.; Tetrahedron Lett. 1984, 25, 911. antifungal,2424 Dhayanithhi, V.; Syed, S. S.; Kumaran, K.; Sankar, K. R. J.; Ragavan, R. V.; Goud, P. S. K.; Kumari, N. S.; Pati, H. N.; J. Serb. Chem. Soc. 2011, 76, 165.,2525 Rajasekaran, A.; Sankaranarayanan, M.; Rajagopal, K. A.; Arch. Pharm. Res. 2006, 29, 535. anticonvulsant,2626 Upadhayaya, R. S.; Jain, S.; Sinha, N.; Kishore, N.; Chandra, R.; Arora, S. K.; Eur. J. Med. Chem. 2004, 39, 579. anti-inflammatory,2727 Mohite, P. B.; Pandhare, R. B.; Khanage, S. G.; Bhaskar,V. H.; J. Pharm. Res. 2010, 3, 43.,2828 Maxwell, J. R.; Wasdahl, D. A.; Wolfson, A. C.; Stenberg, V. I.; J. Med. Chem. 1984, 27, 1565. antitubercular,2929 Adamec, J.; Waisser, K.; Kunes, J.; Kaustova, J.; Arch. Pharm. 2005, 338, 385. anticancer,3030 De Souza, A. O.; Pedrosa, M. T.; Alderete, J. B.; Cruz, A. F.; Prado, M. A.; Alves, R. B.; Silva, C. L.; Pharmazie 2005, 60, 396. antineoplastic,3131 Akimoto, H.; Ootsu, K.; Itoh, F.; Eur. Patent EP 530,537 1993 (CA 119:226417). antiallergic,3232 Peet, N. P.; Baugh, L. E.; Sunder, S.; Lewis, J. E.; Matthews, E. H.; Olberding, E. L.; Shah, D. N.; J. Med. Chem. 1986, 29, 2403.

33 Ellis, G. P.; Shaw, D.; J. Med. Chem. 1972, 15, 865.
-3434 Nohara, A.; Kuriki, H.; Saijo, T.; Sugihara, H.; Kanno, M.; Sanno, Y.; J. Med. Chem. 1977, 20, 141. and antiviral3535 Vieira, E.; Huwyler, S.; Jolidon, S.; Knoflach, F.; Mutel, V.; Wichmann, J.; Bioorg. Med. Chem. Lett. 2005, 15, 4628. especially anti-HIV3636 Gagnon, A.; Landry, S.; Coulombe, R.; Jakalian, A.; Guse, I.; Thavonekham, B.; Bonneau, P. R.; Yoakim, C.; Simoneau, B.; Bioorg. Med. Chem. Lett. 2009, 19, 1199. activities.

The synthesis of tetrazole and its derivatives has attracted considerable attention since the broad utilities found for tetrazoles. In this context, the different preparative methods have been emerged so far.3737 Katritzky, A. R.; Cai, C.; Meher, N. K.; Synthesis 2007, 1204 and all references cited therein.,3838 Patil, U. B.; Kumthekar, K. R.; Nagarkar, J. M.; Tetrahedron Lett. 2012, 53, 3706. Among them, the [3 + 2]-cycloaddition reaction of nitriles with azides is a well-known and most extensively studied and used procedure for synthesis of diverse 5-substituted-1H-tetrazoles.3939 Demko, Z. P.; Sharpless, K. B;. J. Org. Chem. 2001, 66, 7945.,4040 Himo, F.; Demko, Z. P.; Noodleman, L.; Sharpless, K. B.; J. Am. Chem. Soc. 2003, 125, 9983. In this regard, several homogeneous reagents or catalysts have been developed to synthesize 5-substituted-1H-tetrazoles.4141 Roh, J.; Vávrová, K.; Hrabálek, A.; Eur. J. Org. Chem. 2012, 6101.,4242 Voitekhovich, S. V.; Ivashkevich, O. A.; Gaponik, P. N.; Russ. J. Org. Chem. 2013, 49, 635. Although these methods exhibit some advantages to access 1H-tetrazoles, their scale up synthesis are restricted by one or more disadvantages such as harsh reaction conditions, low yields, long reaction times, the use of strong Lewis acids, the in situ generation of HN3 as a highly dangerous volatile material with a great risk of eruption and toxicity, production of the stable metal-tetrazole complexes, the use of expensive and toxic metals or solvents, tedious work-up procedure and failure to undertake the recovery or reusability of the catalyst.

Nowadays, heterogeneous catalysts have gained considerable attention due to both economic and environmental standpoints. The successful applications of heterogeneous systems in various organic transformations are well documented. Employing the heterogeneous catalysts often leads to the simple experimental procedures, mild reaction conditions, recovery and reusability of the catalyst, the minimization of undesirable chemical wastes, and the production of large quantities of products by using a small amount of catalyst. Thus, the exploit of heterogeneous catalysis has an exact superiority over homogeneous catalyst. In recent decade, some heterogeneous catalytic systems were developed to promote the synthesis of 5-substituted-1H-tetrazoles;4343 Sreedhar, B.; Kumar, A. S.; Yada, D.; Tetrahedron Lett. 2011, 52, 3565.

44 Nasrollahzadeh, M.; Bayat, Y.; Habibi, D.; Moshaee, S.; Tetrahedron Lett. 2009, 50, 4435.

45 Du, Z.; Si, C.; Li, Y.; Wang, Y.; Lu, J.; Int. J. Mol. Sci. 2012, 13, 4696.

46 Esmaeilpour, M.; Javidi, J.; Nowroozi Dodeji, F.; Mokhtari Abarghoui, M.; J. Mol. Catal. A: Chem. 2014, 393, 18.

47 Najafi Chermahini, A.; Teimouri, A.; Momenbeik, F.; Zarei, A.; Dalirnasab, Z.; Ghaedi, A.; Roosta, M.; J. Heterocycl. Chem. 2010, 47, 913.

48 Teimouri, A.; Najafi Chermahini, A.; Polyhedron 2011, 30, 2606.

49 Nasrollahzadeh, M.; Habibi, D.; Shahkarami, Z.; Bayat, Y.; Tetrahedron 2009, 65, 10715.

50 Sharghi, H.; Ebrahimpourmoghaddam, S.; Doroodmand, M. M.; J. Organomet. Chem. 2013, 738, 41.

51 Dehghani, F.; Sardarian, A. R.; Esmaeilpour, M.; J. Organomet. Chem. 2013, 743, 87.

52 Kantam, M. L.; Shiva Kumar, K. B.; Phani Raja, K. J.; J. Mol. Catal. A: Chem. 2006, 247, 186.

53 Lakshmi Kantam, M.; Balasubrahmanyam, V.; Shiva Kumar, K. B.; Synth. Commun. 2006, 36, 1809.

54 He, J.; Li, B.; Chen, F.; Xu, Z.; Yin, G.; J. Mol. Catal. A: Chem. 2009, 304, 135.
-5555 Lang, L.; Zhou, H.; Xue, M.; Wang, X.; Xu, Z.; Mater. Lett. 2013, 106, 443. nevertheless, drawbacks are usually accompanied with these heterogeneous catalysts comprising: (i) the strong acidic nature of some catalysts that largely aggravates the release of dangerous HN3; (ii) the use of weakly bonded or none-bonded metal salts supported on mineral supports which normally lead to desorption of active metal species during the reaction progress or work-up procedure; (iii) the formation of stable metal-tetrazole complexes that makes the tedious work-up procedure and (iv) the thermal or chemical instability. Thus, the employment of a heterogeneous catalyst that obviates the above drawbacks is of particular interest.

Silica-based catalysts offer several advantages like cheapness, mild reaction conditions, high yields and selectivity, non-corrosive properties, ease of handling and preparation. In addition, they could be easily removed from the reaction mixture, recovered, and reused by a simple flash filtration. Recently, we have reported the synthesis, characterization, and application of copper-doped silica cuprous sulfate (CDSCS) as a novel and efficient heterogeneous nano-catalyst for the CuI-catalyzed 'Click' synthesis of 1,4-disubstituted 1,2,3-triazoles5656 Soltani Rad, M. N.; Behrouz, S.; Doroodmand, M. M.; Movahediyan, A.; Tetrahedron 2012, 68, 7812. and also 3,5-disubstituted isoxazoles.5757 Soltani Rad, M. N.; Behrouz, S.; Faghihi, M. A.; J. Iran Chem. Soc. 2014, 11, 361. In light of the unique biological activities of tetrazoles and also in continuation of our ongoing research in utilizing CDSCS in organic synthesis,5656 Soltani Rad, M. N.; Behrouz, S.; Doroodmand, M. M.; Movahediyan, A.; Tetrahedron 2012, 68, 7812.

57 Soltani Rad, M. N.; Behrouz, S.; Faghihi, M. A.; J. Iran Chem. Soc. 2014, 11, 361.
-5858 Soltani Rad, M. N.; Behrouz, S.; Doroodmand, M. M.; Moghtaderi, N.; Synthesis 2011, 3915. we herein report a practical and environmentally benign catalytic protocol for efficient synthesis of 5-substituted-1H-tetrazole derivatives using CDSCS (Scheme 1). In this synthesis, the desired nitriles 1 were primarily achieved by the reaction of diverse nucleophiles with 2-chloroacetonitrile or 3-chloropropanenitrile in the presence of an equimolar mixture of triethylamine (TEA)-K2CO3 and catalytic amount of tetrabutylammonium iodide (TBAI) in MeCN at reflux condition. Then, to access tetrazoles 2, the cycloaddition reaction of nitriles 1 with sodium azide was carried out utilizing CDSCS in H2O/i-PrOH at reflux condition.

Scheme 1
CDSCS catalyzed synthesis of 5-substituted 1H-tetrazoles.

Results and Discussion

The first step of this synthetic approach was initiated by the preparation of the essential nitriles 1. In this context, various nucleophiles comprising azole derivatives, purine and pyrimidine nucleobases and phenols underwent the N- or O-alkylation reaction with 2-chloroacetonitrile or 3-chloropropanenitrile through the SN2-type reaction. The reaction of the selected nucleophiles with above chloronitriles was carried out using TEA-K2CO3 (1:1) in the presence of TBAI (cat.) in refluxing MeCN (anhyd.) to gain 1. Afterward, to assess the optimized reaction condition for [3 + 2]-cycloaddition of 1 with NaN3, the influence of various parameters including temperature, solvent, and catalyst was studied. In this regard, the cycloaddition reaction of 2-(1H-benzo[d]imidazol-1-yl)acetonitrile (1a) with NaN3 was selected as a sample reaction.

To progress the reaction efficiently, the choice of an appropriate solvent is crucial. Among tested solvents, the use of water has attracted enormous interest in organic transformations, since water is a cheap, clean, and universal solvent exhibiting extraordinary physical properties and enviro-economic benefits.5959 Reichardt, C.; Solvents and Solvent Effects in Organic Chemistry; VCH Verlagsgesellschaft mbH: Weinheim, 1988. In this regard, the model reaction was carried out in an aquatic media at room temperature. However, the corresponding tetrazole 2a was obtained only in 19% yield (Table 1, entry 1). To increase the reaction yield, the model reaction was investigated at varied temperatures (Table 1). As indicated in Table 1, the use of pure water at different temperatures failed to afford the satisfactory results even at reflux condition. This can be attributed to the lack of solubility of nitrile 1a in pure water. Consequently, the influence of several 1:1 (v/v) solutions of H2O with some water miscible organic solvents were examined (Table 1).

Table 1
Effect of solvent and temperature on the model reactiona a Reaction conditions: nitrile (0.01 mol), NaN3 (0.015 mol), CDSCS (0.05 mol%), solvent (50 mL);

As indicated in Table 1, a solution of H2O/i-PrOH (1:1, v/v) was found to be the most appropriate solvent for synthesis of tetrazole derivatives in the presence of CDSCS (Table 1, entry 8). Therefore, this solvent was used for all subsequent reactions. Employing H2O/tetrahydrofuran (THF) (1:1, v/v) solution afforded the corresponding tetrazole in 81% yield after 8 h (Table 1, entry 14). Moreover, the combination of water with other miscible solvents like acetone, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), and hexamethylphosphoramide (HMPA) yielded the moderate amount of product (Table 1, entries 9-13). In addition, when THF and/or i-PrOH were used separately as a solvent, 2a was obtained in 46 and 60% yields, respectively (Table 1, entries 15, 16). Also, in an attempt to carry out the reaction in H2O/i-PrOH (1:1, v/v) solution at r.t. 2a was produced in 62% yield after 18 h (Table 1, entry 7).

It is well understood that cycloaddition reaction between nitrile and azide is very slowly achieved in the absence of a suitable catalyst and thus it is unsuitable for large scale synthesis. In this connection, the choice of an efficient catalyst is critically essential for progress of the reaction. To investigate the catalytic potency of CDSCS, the effect of different catalysts was studied and compared with CDSCS (Table 2). To this end, we examined the potency of several heterogeneous or homogeneous catalysts including Lewis and proton acids, solid supports, and ammonium salts which are often applied in synthesis of tetrazole derivatives. As the results in Table 2 indicate, higher yield of 2a in shorter reaction time were observed utilizing CDSCS in comparison with other tested catalysts. The use of other catalysts yielded 2a in moderate to reasonable amounts in variable times.

Table 2
Comparing the influence of different catalysts with CDSCS in synthesis of 2aa a Reaction conditions: nitrile (0.01 mol), NaN3 (0.015 mol), catalyst, H2O/i-PrOH (50 mL);

The optimized stoichiometric ratio of nitrile/sodium azide to access 2a using CDSCS (0.05 mol%) was determined to be 1:1.5.

The generality and versatility of current protocol was screened by applying the optimized condition to various structurally diverse nitriles 1a-1o (Table 3). Due to Table 3, CDSCS proved to be a convenient and efficient heterogeneous nano-catalyst for cycloaddition reaction of sodium azide with different nitriles tethered to bioactive cores. As shown in Table 3, nitriles bearing azole derivatives (Table 3, entries 1-4, 10, 11), xanthine (Table 3, entry 9), purine and pyrimidine nucleobases (Table 3, entries 5 and 6) were employed to produce their corresponding 5-substituted-1H-tetrazole derivatives in good to excellent yields. Moreover, nitriles involving amine (Table 3, entry 12), cyclic amides (Table 3, entries 7 and 8), and phenols (Table 3, entries 13-15) underwent cycloaddition reaction with azide to obtain the desired tetrazole derivatives. The structures of all synthesized compounds were confirmed by 1H and 13C NMR, elemental analysis, mass and infrared (IR) spectroscopy techniques.

Table 3
Synthesis of 5-substituted-1 H -tetrazole derivatives using CDSCSa a Reaction conditions: nitrile (0.01 mol), NaN3 (0.015 mol), CDSCS (0.05 mol%), H2O/i-PrOH (50 mL);

The applicability of the present protocol in preparative scale was also examined. In this context, the cycloaddition reaction of nitrile 1a with NaN3 was performed on a 100-mmol scale. Interestingly, 2a was obtained in an excellent yield (89%) after 4 h which is comparable to smaller scale synthesis (Table 3, entry 1).

The recoverability and reusability of the catalyst is an important issue from different aspects like commercial applications and environmental concerns. In this connection, the reusability of CDSCS was investigated for sample reaction (Table 4).

Table 4
The reusability of CDSCS in successive trails for synthesis of 2aa a Reaction conditions: nitrile (0.01 mol), NaN3 (0.015 mol), recovered CDSCS, H2O/i-PrOH (50 mL);

The separation of the catalyst from the reaction media was conducted using a sintered glass funnel. The catalyst was then washed with ethyl acetate (2 × 15 mL) and dried in a vacuum oven at 90 ºC for 20 min. The catalyst was sequentially applied for 5 runs without the addition of the fresh catalyst to the reaction media. As shown in Table 4, the catalyst can be reused for many consecutive times without considerable decline in its catalytic activity. To determine the amount of leached Cu from CDSCS, the copper content of catalyst was determined using inductively coupled plasma (ICP) analysis for both fresh and reused catalyst (after 5 runs). Based on the ICP results, the leached Cu was found to be 0.014%, which is negligible.

Conclusions

In conclusion, we have described a convenient protocol for facile and high yield synthesis of the new structurally diverse 5-substituted-1H-tetrazoles utilizing CDSCS as a highly efficient heterogeneous nano-catalyst. CDSCS was proved to be a useful catalyst for cycloaddition reaction of sodium azide with different nitriles involving bioactive cores in H2O/i-PrOH (1:1, v/v) at reflux condition, which affords the corresponding tetrazole derivatives in good to excellent yields. The use of ecofriendly solvent, the reusability of the catalyst, the simplicity of the process, cheapness, and applicability in preparative scale are benefits that can be mentioned for current synthetic protocol.

Experimental

General

All chemicals were purchased from either Fluka or Merck. Reactions were followed by TLC using SILG/UV 254 silica-gel plates. The fresh CDSCS was prepared according to our previous reported procedure.5656 Soltani Rad, M. N.; Behrouz, S.; Doroodmand, M. M.; Movahediyan, A.; Tetrahedron 2012, 68, 7812.,5858 Soltani Rad, M. N.; Behrouz, S.; Doroodmand, M. M.; Moghtaderi, N.; Synthesis 2011, 3915. Column chromatography was performed on silica gel 60 (0.063-0.200 mm, 70-230 mesh; ASTM). Melting points were measured using Electrothermal IA 9000 melting point apparatus in open capillary tubes and are uncorrected. IR spectra were obtained using a Shimadzu FTIR-8300 spectrophotometer. 1H and 13C NMR spectrum was recorded on Brüker Avance-DPX-250/400 spectrometer operating at 250/62.5 and/or 400/100 MHz, respectively. Chemical shifts are given in δ relative to tetramethylsilane (TMS) as an internal standard, coupling constants J are given in Hz. Abbreviations used for 1H NMR signals are: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad and etc. GC-MS was performed on a Shimadzu GCMS-QP1000-EX apparatus (m/z; rel. %). Elemental analyses were performed on a PerkinElmer 240-B micro-analyzer.

General procedure for synthesis of alkyl nitriles 1a-1o

In a double-necked round bottom flask (100 mL) equipped with a condenser, it was added a mixture, consisting of nucleophile (including: N-heterocyclic compounds or phenolic derivatives) (0.01 mol), 2-chloroacetonitrile or 3-chloropropanenitrile (0.013 mol), Et3N (0.01 mol), K2CO3 (0.01 mol), and a catalytic amount of TBAI (0.1 g) in anhydrous MeCN (40 mL). The mixture was refluxed until TLC monitoring indicates no further improvement in the reaction. The solvent was evaporated in vacuo and the remaining foam was dissolved in CHCl3 (100 mL) and subsequently washed with water (2 × 100 mL). The organic layer was dried (Na2SO4) and evaporated. The crude product was purified by column chromatography on silica gel.

General procedure for synthesis of 5-substituted-1H-tetrazole 2a-2o

In a double-necked round bottom flask (100 mL) equipped with a condenser, it was added a mixture, consisting of alkyl nitrile (0.01 mol), NaN3 (0.015 mol), and CDSCS (0.3 g, 0.05 mol%) in H2O/i-PrOH (1:1 v/v, 50 mL). The mixture was heated at reflux until TLC monitoring indicates no further improvement in the conversion (Table 3). The reaction mixture was then cooled to room temperature, vacuum-filtered using a sintered-glass funnel and the residue was washed with ethyl acetate (2 × 20 mL). The filtrate was treated with 5 N HCl to reach pH = 3 and it was allowed to stir for 30 minutes. Subsequently, the organic layer was separated, dried over anhydrous Na2SO4 and evaporated. The crude product was purified by recrystallization and/or column chromatography on silica gel eluted with proper solvents.

1-((1H-Tetrazol-5-yl)methyl)-1H-benzo[d]imidazole (2a)

Recrystallization (EtOAc) afforded a yellow solid; yield: 1.86 g (93%); mp 235-240 ºC (dec.); IR (KBr) n / cm-1 3385, 3100, 2968, 2800, 1616, 1462, 1410; 1H NMR (250 MHz, DMSO-d6) δ 8.28 (s, 1H, C(2)-H, benzimidazole), 7.64-7.61 (m, 2H, aryl), 7.22-7.13 (m, 2H, aryl), 5.55 (s, 2H, NCH2), 2.51 (s, 1H, exchangeable with D2O, NH, tetrazole); 13C NMR (250 MHz, DMSO-d6) δ 51.7, 116.6, 117.8, 122.2, 123.2, 133.6, 137.5, 145.6, 155.6; MS (EI): m/z (%) = 200 (14.5) [M+]; anal. calcd. for C9H8N6: C, 53.99; H, 4.03; N, 41.98; found: C, 54.06; H, 4.15; N, 41.92.

1-((1H-Tetrazol-5-yl)methyl)-2-methyl-1H-benzo[d]imidazole (2b)

Recrystallization (EtOAc) afforded a creamy solid; yield: 1.90 g (89%); mp > 300 ºC (dec.); IR (KBr) n / cm-1 3384, 3100, 2982, 1619, 1580, 1480; 1H NMR (250 MHz, DMSO-d6) δ 7.57-7.46 (m, 2H, aryl), 7.16-7.08 (m, 2H, aryl), 5.46 (s, 2H, NCH2), 4.55 (s, 1H, exchangeable with D2O, NH, tetrazole), 2.67 (s, 3H, CH3); 13C NMR (250 MHz, DMSO-d6) δ 17.9, 49.1, 115.5, 116.6, 121.5, 123.0, 134.7, 140.3, 151.2, 158.4; MS (EI): m/z (%) = 214 (11.4) [M+]; anal. calcd. for C10H10N6: C, 56.07; H, 4.71; N, 39.23; found: C, 56.19; H, 4.62; N, 39.35.

5-((2-Methyl-4-nitro-1H-imidazol-1-yl)methyl)-1H-tetrazole (2c)

Column chromatography (silica gel, EtOAc-MeOH, 1:1) afforded a brown solid; yield: 1.77 g (85%); mp 208-212 ºC (dec.); IR (KBr) n / cm-1 3350, 3128, 2900, 1645, 1500, 1456, 1300; 1H NMR (250 MHz, DMSO-d6) δ 8.30 (s, 1H, C(5)-H, imidazole), 5.40 (s, 2H, NCH2), 4.40 (s, 1H, exchangeable with D2O, NH, tetrazole), 2.43 (s, 3H, CH3); 13C NMR (250 MHz, DMSO-d6) δ 15.7, 48.2, 121.1, 147.8, 153.0, 160.9; MS (EI): m/z (%) = 209 (8.1) [M+]; anal. calcd. for C6H7N7O2: C, 34.45; H, 3.37; N, 46.88; found: C, 34.38; H, 3.42; N, 46.94.

5-((2-Phenyl-1H-imidazol-1-yl)methyl)-1H-tetrazole (2d)

Recrystallization (EtOAc) afforded a bright brown solid; yield: 1.96 g (87%); mp 216-220 ºC (dec.); IR (KBr) n / cm-1 3280, 3150, 2937, 2850, 1653, 1476; 1H NMR (250 MHz, DMSO-d6) δ 7.94-7.91 (m, 2H, aryl), 7.58-7.46 (m, 3H, aryl), 7.20 (s, 1H, C(4)-H, imidazole), 6.95 (s, 1H, C(5)-H, imidazole), 5.28 (s, 2H, NCH2), 2.50 (s, 1H, exchangeable with D2O, NH, tetrazole); 13C NMR (250 MHz, DMSO-d6) δ 49.0, 121.0, 125.5, 127.0, 127.4, 129.6, 131.0, 152.1, 160.1; MS (EI): m/z (%) = 226 (17.3) [M+]; anal. calcd. for C11H10N6: C, 58.40; H, 4.46; N, 37.15; found: C, 58.31; H, 4.58; N, 37.02.

1-((1H-Tetrazol-5-yl)methyl)pyrimidine-2,4(1H,3H)-dione (2e)

Recrystallization (EtOAc) afforded a creamy solid; yield: 1.61 g (83%); mp 285-290 ºC; IR (KBr) n / cm-1 3365, 3129, 2876, 1723, 1706, 1650, 1458; 1H NMR (250 MHz, DMSO-d6) δ 11.37 (s, 1H, exchangeable with D2O, NH, uracil), 7.67 (d, 1H, J 7.5 Hz, C(6)-H, uracil), 5.70 (d, 1H, J7.5 Hz, C(5)-H, uracil), 5.07 (s, 2H, NCH2), 4.07 (s, 1H, exchangeable with D2O, NH, tetrazole); 13C NMR (250 MHz, DMSO-d6) δ 47.3, 103.4, 142.1, 151.5, 156.4, 161.7; MS (EI): m/z (%) = 194 (10.8) [M+]; anal. calcd. for C6H6N6O2: C, 37.12; H, 3.11; N, 43.29; found: C, 37.24; H, 3.26; N, 43.24.

9-((1H-Tetrazol-5-yl)methyl)-9H-purin-6-amine (2f)

Recrystallization (EtOAc) afforded a creamy solid; yield: 1.78 g (82%); mp > 300 ºC (dec.); IR (KBr) n / cm-1 3328, 3100, 2853, 1676, 1520, 1471; 1H NMR (250 MHz, DMSO-d6) δ 8.12 (s, 1H, C(8)-H, adenine), 8.05 (s, 1H, C(2)-H, adenine), 7.17 (s, 2H, exchangeable with D2O, NH2), 5.42 (s, 2H, NCH2), 4.80 (s, 1H, exchangeable with D2O, NH, tetrazole); 13C NMR (250 MHz, DMSO-d6) δ 54.3, 118.4, 139.9, 147.7, 151.5, 155.6, 162.8; MS (EI): m/z (%) = 217 (9.5) [M+]; anal. calcd. for C7H7N9: C, 38.71; H, 3.25; N, 58.04; found: C, 38.63; H, 3.18; N, 58.12.

2-((1H-Tetrazol-5-yl)methyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (2g)

Recrystallization (EtOAc) afforded a pale-yellow solid; yield: 2.30 g (87%); mp 225-229 ºC (dec.); IR (KBr) n / cm-1 3324, 3050, 2976, 1715, 1600, 1460, 1321, 761; 1H NMR (250 MHz, DMSO-d6) δ 7.84-7.45 (m, 4H, aryl), 4.44 (s, 2H, NCH2), 2.51 (s, 1H, exchangeable with D2O, NH, tetrazole); 13C NMR (250 MHz, DMSO-d6) δ 39.5, 126.3, 126.8, 127.3, 131.6, 132.0, 139.3, 156.6, 169.1; MS (EI): m/z (%) = 265 (19.7) [M+]; anal. calcd. for C10H8N4O3S: C, 45.45; H, 3.05; N, 21.20; S, 12.13; found: C, 45.56; H, 3.11; N, 21.14; S, 12.25.

2-(2-(1H-Tetrazol-5-yl)ethyl)isoindoline-1,3-dione (2h)

Recrystallization (EtOAc) afforded a creamy solid; yield: 2.21 g (91%); mp > 300 ºC (dec.); IR (KBr) n / cm-1 3374, 3063, 2950, 1772, 1620, 1510, 1458; 1H NMR (250 MHz, DMSO-d6) δ 7.28-7.09 (m, 4H, aryl), 4.34 (t, 2H, J 7.2 Hz, NCH2), 3.46 (s, 1H, exchangeable with D2O, NH, tetrazole), 3.08 (t, 2H, J 7.2 Hz, NCH2CH2); 13C NMR (250 MHz, DMSO-d6) δ 27.6, 42.6, 126.3, 131.6, 134.2, 159.4, 167.0; MS (EI): m/z (%) = 243 (13.9) [M+]; anal. calcd. for C11H9N5O2: C, 54.32; H, 3.73; N, 28.79; found: C, 54.43; H, 3.82; N, 28.86.

7-(2-(1H-Tetrazol-5-yl)ethyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione (2i)

Column chromatography (silica gel, MeOH) afforded a brown foam; yield: 2.48 g (90%); IR (KBr) n / cm-1 3300, 2985, 1716, 1702, 1693, 1658, 1379;1H NMR(250 MHz, DMSO-d6) δ 7.86 (s, 1H, C(8)-H, theophylline), 4.55 (t, 2H, J 5.7 Hz, NCH2), 3.41 (t, 2H, J 5.7 Hz, NCH2CH2), 3.27 (s, 3H, N(1)-CH3), 3.09 (s, 3H, N(3)-CH3), 2.54 (s, 1H, exchangeable with D2O, NH, tetrazole); 13C NMR (250 MHz, DMSO-d6) δ 20.1, 31.0, 32.3, 34.5, 106.3, 136.8, 145.9, 147.7, 154.5, 159.8; MS (EI): m/z (%) = 276 (20.7) [M+]; anal. calcd. for C10H12N8O2: C, 43.48; H, 4.38; N, 40.56; found: C, 43.59; H, 4.27; N, 40.61.

5-(2-(2-Phenyl-1H-imidazol-1-yl)ethyl)-1H-tetrazole (2j)

Recrystallization (EtOAc) afforded a creamy solid; yield: 2.06 g (86%); mp 250-255 ºC (dec.); IR (KBr) n / cm-1 3300, 3050, 2960, 1650, 1485; 1H NMR (250 MHz, DMSO-d6) δ 7.58-7.44 (m, 5H, aryl), 7.32 (s, 1H, C(4)-H), 6.95 (s, 1H, C(5)-H), 4.29 (t, 2H, J 7.5 Hz, NCH2), 3.07 (t, 2H, J 7.5 Hz, NCH2CH2), 1.98 (s, 1H, exchangeable with D2O, NH, tetrazole); 13C NMR (250 MHz, DMSO-d6) δ 30.0, 54.5, 120.8, 125.8, 126.3, 127.0, 127.2, 130.2, 149.7, 155.1; MS (EI): m/z (%) = 240 (15.8) [M+]; anal. calcd. for C12H12N6: C, 59.99; H, 5.03; N, 34.98; found: C, 60.07; H, 5.16; N, 34.87.

1-(2-(1H-Tetrazol-5-yl)ethyl)-1H-benzo[d]imidazole (2k)

Recrystallization (EtOAc) afforded a brown solid; yield: 1.90 g (89%); mp 300-304 ºC (dec.); IR (KBr) n / cm-1 3326, 3100, 2926, 1653, 1501, 1470; 1H NMR (250 MHz, DMSO-d6) δ 8.10 (s, 1H, C(2)-H, benzimidazole), 7.62-7.55 (m, 2H, aryl), 7.24-7.14 (m, 2H, aryl), 4.55 (t, 2H, J 6.5 Hz, NCH2), 3.17 (t, 2H, J 6.5 Hz, NCH2CH2), 2.51 (s, 1H, exchangeable with D2O, NH, tetrazole); 13C NMR (250 MHz, DMSO-d6) δ 31.1, 60.5, 116.1, 117.3, 124.1, 125.2, 134.6, 138.7, 149.3, 161.7; MS (EI): m/z (%) = 214 (12.7) [M+]; anal. calcd. for C10H10N6: C, 55.94; H, 4.63; N, 39.14; found: C, 55.83; H, 4.75; N, 39.28.

1-(2-(1H-Tetrazol-5-yl)ethyl)-4-phenylpiperazine (2l)

Column chromatography (silica gel, EtOAc-n-hexane, 1:1) afforded a bright brown solid; yield: 2.37 g (92%); mp > 300 ºC (dec.); IR (KBr) n / cm-1 3340, 3100, 2992, 1659, 1653, 1476; 1H NMR (250 MHz, DMSO-d6) δ 7.26-7.20 (m, 2H, aryl), 6.91-6.81 (m, 3H, aryl), 4.96 (s, 1H, exchangeable with D2O, NH, tetrazole), 3.83 (t, 2H, J 6.5 Hz, CH2), 3.09 (t, 2H, J 7.2 Hz, CH2), 2.72-2.65 (m, 8H, 4 CH2); 13C NMR (250 MHz, DMSO-d6) δ 28.2, 49.1, 52.2, 56.1, 114.3, 119.5, 130.5, 150.0, 160.2; MS (EI): m/z (%) = 258 (19.7) [M+]; anal. calcd. for C13H18N6: C, 60.44; H, 7.02; N, 32.53; found: C, 60.31; H, 7.08; N, 32.61.

5-((4-Ethylphenoxy)methyl)-1H-tetrazole (2m)

Recrystallization (EtOAc) afforded a creamy solid; yield: 1.85 g (91%); mp 83-85 ºC; IR (KBr) n / cm-1 3300, 3040, 2957, 1654, 1458; 1H NMR (250 MHz, DMSO-d6) δ 7.18-7.06 (m, 2H, aryl), 6.97-6.93 (m, 1H, aryl), 6.86-6.77 (m, 1H, aryl), 5.42 (s, 2H, OCH2), 4.36 (s, 1H, exchangeable with D2O, NH, tetrazole), 2.57-2.45 (m, 2H, CH2CH3), 1.14 (t, 3H, J 7.5 Hz, CH3); 13C NMR (250 MHz, DMSO-d6) δ 14.6, 32.3, 72.1, 115.9, 128.4, 132.4, 155.1, 159.7; MS (EI): m/z (%) = 204 (14.5) [M+]; anal. calcd. for C10H12N4O: C, 58.81; H, 5.92; N, 27.43; found: C, 58.89; H, 6.04; N, 27.51.

5-((3-Chloro-4-methylphenoxy)methyl)-1H-tetrazole (2n)

Recrystallization (EtOAc) afforded a white solid; yield: 1.99 g (89%); mp 145-147 ºC; IR (KBr) n / cm-1 3250, 3028, 2947, 1657, 1451, 720; 1H NMR (250 MHz, DMSO-d6) δ 7.04 (d, 1H, J 8.0 Hz, aryl), 6.58 (d, 1H, J 8.0 Hz, aryl), 6.49 (s, 1H, aryl), 5.61 (s, 2H, OCH2), 4.62 (s, 1H, exchangeable with D2O, NH, tetrazole), 2.47 (s, 3H, CH3); 13C NMR (250 MHz, DMSO-d6) δ 20.1, 70.8, 114.7, 116.4, 125.5, 129.0, 138.8, 155.9, 158.4; MS (EI): m/z (%) = 224 (19.1) [M+]; anal. calcd. for C9H9ClN4O: C, 48.12; H, 4.04; Cl, 15.78; N, 24.94; found: C, 48.05; H, 4.07; Cl, 15.71; N, 25.03.

5-((4-Chlorophenoxy)methyl)-1H-tetrazole (2o)

Recrystallization (EtOAc) afforded a bright brown solid; yield: 1.89 g (90%); mp 241-245 ºC; IR (KBr) n / cm-1 3270, 3062, 2981, 1654, 1469, 715; 1H NMR (250 MHz, DMSO-d6) δ 7.13 (d, 2H, J 8.8 Hz, aryl), 6.91 (d, 2H, J 8.8 Hz, aryl), 5.05 (s, 2H, OCH2), 4.39 (s, 1H, exchangeable with D2O, NH, tetrazole); 13C NMR (250 MHz, DMSO-d6) δ 71.2, 116.3, 127.4, 129.7, 154.7, 159.0; MS (EI): m/z (%) = 210 (18.1) [M+]; anal. calcd. for C8H7ClN4O: C, 45.62; H, 3.35; Cl, 16.83; N, 26.60; found: C, 45.69; H, 3.43; Cl, 16.80; N, 26.67.

Supplementary Information

1H and 13C NMR spectra of synthesized tetrazoles are available free of charge at http://jbcs.sbq.org.br as PDF file.

https://minio.scielo.br/documentstore/1678-4790/vRnrR7Fmv8DHMkcbZfZYGrQ/f546b07e0146b022a35cc8c12590ac8a2cba198d.pdf

Acknowledgments

The author is grateful to Shiraz University of Technology Research Councils for partial support of this work.

References

  • 1
    Butler, R. N. In Comprehensive Heterocyclic Chemistry II, vol. 4; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., eds.; Pergamon: Oxford, 1996, p. 897.
  • 2
    Ostrovskii, V. A.; Koldobskii, G. I.; Trifonov, R. E. In Comprehensive Heterocyclic Chemistry III, vol. 6; Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K., eds.; Elsevier: Oxford, 2008, p. 257.
  • 3
    Jursic, B. S.; Leblanc, B. W.; J. Heterocycl. Chem. 1998, 35, 405 and references cited therein.
  • 4
    Koldobskii, G. I.; Ostrovskii, V. A.; Popavskii, V. S.; Khim. Geterotsikl. Soedin. 1981, 10, 1299.
  • 5
    Zhao-Xu, C.; Heming, X.; Int. J. Quantum Chem. 2000, 79, 350.
  • 6
    Kharaghiosoff, K.; Klapotke, T. M.; Mayer, P.; Piotrowski, H.; Polborn, K.; Willer, R. L.; Weigand, J. J.; J. Org. Chem. 2006, 71, 1295.
  • 7
    Hammerl, A.; Hiskey, M. A.; Holl, G.; Klapoetke, T. M.; Polborn, K.; Stierstorfer, J.; Weigand, J. J.; Chem. Mater. 2005, 17, 3784.
  • 8
    Downard, A. J.; Steel, P. J.; Steenwijk, J.; Aust. J. Chem. 1995, 48, 1625.
  • 9
    Mukhopadhyay, S.; Lasri, J.; Guedes da Silva, M. F. C.; Januário Charmier, M. A.; Pombeiro, A. J. L.; Polyhedron 2008, 27, 2883.
  • 10
    McManus, J. M.; Herbst, R. M.; J. Org. Chem. 1959, 24, 1464.
  • 11
    Li, J.; Ren, T.; Liu, H.; Wang, D.; Liu, W.; Wear 2000, 246, 130.
  • 12
    Herr, R. J.; Bioorg. Med. Chem. 2002, 10, 3379.
  • 13
    Meanwell, N. A.; J. Med. Chem. 2011, 54, 2529.
  • 14
    Pegklidou, K.; Koukoulitsa, C.; Nicolaou, I.; Demopoulos, V. J.; Bioorg. Med. Chem. 2010, 18, 2107.
  • 15
    Holland, G. F.; Pereira, J. N.; J. Med. Chem. 1967, 10, 149.
  • 16
    Marvi, O.; Alizadeh, A.; Zarrabi, S.; Bull. Korean Chem. Soc. 2011, 32, 4001.
  • 17
    Aureggi, V.; Sedelmeier, G.; Angew. Chem., Int. Ed. 2007, 46, 8440.
  • 18
    Alonen, A.; Finel, M.; Kostiainen, R.; Biochem. Pharmacol. 2008, 76, 763.
  • 19
    Alonen, A.; Jansson, J.; Kallonen, S.; Kiriazis, A.; Aitio, O.; Finel, M.; Kostiainen, R.; Bioorg. Chem. 2008, 36, 148.
  • 20
    Bräuner-Osborne, H.; Egebjerg, J.; Nielsen, E. O.; Madsen, U.; Krogsgaard-Larsen, P.; J. Med. Chem. 2000, 43, 2609.
  • 21
    Lusina, M.; Cindrić, T.; Tamaić, J.; Peko, M.; Pozaić, L.; Musulin, N.; Int. J. Pharm. 2005, 291, 127.
  • 22
    Narasaiaha, T.; Subba Raoa, D.; Rasheeda, S.; Madhavaa, G.; Srinivasulua, D.; Brahma Naidub, P.; Naga Rajua, C.; Der Pharm. Lett 2012, 4, 854.
  • 23
    Andrus, A.; Partridge, B.; Heck, J. V.; Christensen, B. G.; Tetrahedron Lett. 1984, 25, 911.
  • 24
    Dhayanithhi, V.; Syed, S. S.; Kumaran, K.; Sankar, K. R. J.; Ragavan, R. V.; Goud, P. S. K.; Kumari, N. S.; Pati, H. N.; J. Serb. Chem. Soc. 2011, 76, 165.
  • 25
    Rajasekaran, A.; Sankaranarayanan, M.; Rajagopal, K. A.; Arch. Pharm. Res. 2006, 29, 535.
  • 26
    Upadhayaya, R. S.; Jain, S.; Sinha, N.; Kishore, N.; Chandra, R.; Arora, S. K.; Eur. J. Med. Chem. 2004, 39, 579.
  • 27
    Mohite, P. B.; Pandhare, R. B.; Khanage, S. G.; Bhaskar,V. H.; J. Pharm. Res. 2010, 3, 43.
  • 28
    Maxwell, J. R.; Wasdahl, D. A.; Wolfson, A. C.; Stenberg, V. I.; J. Med. Chem. 1984, 27, 1565.
  • 29
    Adamec, J.; Waisser, K.; Kunes, J.; Kaustova, J.; Arch. Pharm. 2005, 338, 385.
  • 30
    De Souza, A. O.; Pedrosa, M. T.; Alderete, J. B.; Cruz, A. F.; Prado, M. A.; Alves, R. B.; Silva, C. L.; Pharmazie 2005, 60, 396.
  • 31
    Akimoto, H.; Ootsu, K.; Itoh, F.; Eur. Patent EP 530,537 1993 (CA 119:226417)
  • 32
    Peet, N. P.; Baugh, L. E.; Sunder, S.; Lewis, J. E.; Matthews, E. H.; Olberding, E. L.; Shah, D. N.; J. Med. Chem. 1986, 29, 2403.
  • 33
    Ellis, G. P.; Shaw, D.; J. Med. Chem. 1972, 15, 865.
  • 34
    Nohara, A.; Kuriki, H.; Saijo, T.; Sugihara, H.; Kanno, M.; Sanno, Y.; J. Med. Chem. 1977, 20, 141.
  • 35
    Vieira, E.; Huwyler, S.; Jolidon, S.; Knoflach, F.; Mutel, V.; Wichmann, J.; Bioorg. Med. Chem. Lett. 2005, 15, 4628.
  • 36
    Gagnon, A.; Landry, S.; Coulombe, R.; Jakalian, A.; Guse, I.; Thavonekham, B.; Bonneau, P. R.; Yoakim, C.; Simoneau, B.; Bioorg. Med. Chem. Lett. 2009, 19, 1199.
  • 37
    Katritzky, A. R.; Cai, C.; Meher, N. K.; Synthesis 2007, 1204 and all references cited therein.
  • 38
    Patil, U. B.; Kumthekar, K. R.; Nagarkar, J. M.; Tetrahedron Lett. 2012, 53, 3706.
  • 39
    Demko, Z. P.; Sharpless, K. B;. J. Org. Chem. 2001, 66, 7945.
  • 40
    Himo, F.; Demko, Z. P.; Noodleman, L.; Sharpless, K. B.; J. Am. Chem. Soc. 2003, 125, 9983.
  • 41
    Roh, J.; Vávrová, K.; Hrabálek, A.; Eur. J. Org. Chem. 2012, 6101.
  • 42
    Voitekhovich, S. V.; Ivashkevich, O. A.; Gaponik, P. N.; Russ. J. Org. Chem. 2013, 49, 635.
  • 43
    Sreedhar, B.; Kumar, A. S.; Yada, D.; Tetrahedron Lett 2011, 52, 3565.
  • 44
    Nasrollahzadeh, M.; Bayat, Y.; Habibi, D.; Moshaee, S.; Tetrahedron Lett 2009, 50, 4435.
  • 45
    Du, Z.; Si, C.; Li, Y.; Wang, Y.; Lu, J.; Int. J. Mol. Sci. 2012, 13, 4696.
  • 46
    Esmaeilpour, M.; Javidi, J.; Nowroozi Dodeji, F.; Mokhtari Abarghoui, M.; J. Mol. Catal. A: Chem. 2014, 393, 18.
  • 47
    Najafi Chermahini, A.; Teimouri, A.; Momenbeik, F.; Zarei, A.; Dalirnasab, Z.; Ghaedi, A.; Roosta, M.; J. Heterocycl. Chem 2010, 47, 913.
  • 48
    Teimouri, A.; Najafi Chermahini, A.; Polyhedron 2011, 30, 2606.
  • 49
    Nasrollahzadeh, M.; Habibi, D.; Shahkarami, Z.; Bayat, Y.; Tetrahedron 2009, 65, 10715.
  • 50
    Sharghi, H.; Ebrahimpourmoghaddam, S.; Doroodmand, M. M.; J. Organomet. Chem 2013, 738, 41.
  • 51
    Dehghani, F.; Sardarian, A. R.; Esmaeilpour, M.; J. Organomet. Chem 2013, 743, 87.
  • 52
    Kantam, M. L.; Shiva Kumar, K. B.; Phani Raja, K. J.; J. Mol. Catal. A: Chem 2006, 247, 186.
  • 53
    Lakshmi Kantam, M.; Balasubrahmanyam, V.; Shiva Kumar, K. B.; Synth. Commun 2006, 36, 1809.
  • 54
    He, J.; Li, B.; Chen, F.; Xu, Z.; Yin, G.; J. Mol. Catal. A: Chem 2009, 304, 135.
  • 55
    Lang, L.; Zhou, H.; Xue, M.; Wang, X.; Xu, Z.; Mater. Lett 2013, 106, 443.
  • 56
    Soltani Rad, M. N.; Behrouz, S.; Doroodmand, M. M.; Movahediyan, A.; Tetrahedron 2012, 68, 7812.
  • 57
    Soltani Rad, M. N.; Behrouz, S.; Faghihi, M. A.; J. Iran Chem. Soc. 2014, 11, 361.
  • 58
    Soltani Rad, M. N.; Behrouz, S.; Doroodmand, M. M.; Moghtaderi, N.; Synthesis 2011, 3915.
  • 59
    Reichardt, C.; Solvents and Solvent Effects in Organic Chemistry; VCH Verlagsgesellschaft mbH: Weinheim, 1988.

Publication Dates

  • Publication in this collection
    Jan 2017

History

  • Received
    02 Mar 2016
  • Accepted
    05 May 2016
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br