Acessibilidade / Reportar erro

Potassium fertilization via fertigation and conventional application on quality of tomato fruits

Adubação potássica via fertigação e aplicação convencional na qualidade de frutos de tomate

ABSTRACT

The tomato crop plays an important environmental, economic and even social role, especially for creating employment and income. The present work aims to evaluate the effects of potassium (K) drip fertigation and of conventional K fertilization on the tomato crop quality. The experiment was conducted under field conditions, in the period between August 2011 and December 2011, in Fortaleza, CE, Brazil. The experimental design was in randomized blocks in a factorial arrangement and the treatments corresponded to doses (D1 = 200, D2 = 400 and D3 = 800 kg K2O ha-1) and K fertilizing methods (F1 - Fertigation and F2 - Conventional fertilization), plus an additional control (without K fertilization) for each fertilizing method, with four replicates. The following variables were analyzed: fruit firmness (FF), soluble solids content (SS), titratable acidity (TA), pH and SS/TA ratio. K fertilization through fertigation (400 kg K2O ha-1) increases SS and the SS/TA ratio of the tomato fruits. Thus, K fertigation is the most promising method, since it allows the use of a lower K dose.

Key words:
Lycopersicon esculentum; fertigation; KCl; postharvest

RESUMO

A cultura do tomateiro desempenha papel relevante socioambiental e econômico, notadamente pela possibilidade de sua utilização como matéria prima na geração de emprego e renda. Objetivou-se, com o presente trabalho, a avaliação do efeito da adubação potássica aplicada via fertigação por gotejamento e de forma convencional na qualidade de frutos de tomate. O experimento foi conduzido em campo, no período entre agosto e dezembro de 2011, em Fortaleza, Ceará. O delineamento experimental foi em blocos ao acaso no esquema fatorial sendo estudados os fatores doses (D1 = 200; D2 = 400 e D3 = 800 kg ha-1 de K2O) e formas de aplicação (F1 - Fertirrigação e F2 - Adubação convencional) e uma testemunha adicional (controle-sem adubo potássico) para cada forma de aplicação com quatro repetições. Foram analisadas as seguintes variáveis: firmeza dos frutos (FF), teor de sólidos solúveis (SS), acidez titulável (AT), pH e a relação (SS/AT). A adubação potássica aplicada de forma fertigada (400 kg ha-1 de K2O) aumenta os SS e a relação SS/AT dos frutos de tomateiro. Desta forma, a fertigação potássica é mais promissora haja vista que este método permite maior fracionamento das doses a serem aplicadas.

Palavras-chave:
Lycopersicon esculentum; fertigação; KCl; pós-colheita

Introduction

The tomato plant can be cultivated in tropical and subtropical regions worldwide, for both fresh consumption, cultivated using stakes, and processing industry, cultivated without support (Santos et al., 2011Santos, F. F. B. dos; Ribeiro, A.; Siqueira, W. J.; Melo, A. M. T de. Desempenho agronômico de híbridos F1 de tomate de mesa. Horticultura Brasileira, v.29, p.304-310, 2011. http://dx.doi.org/10.1590/S0102-05362011000300008
http://dx.doi.org/10.1590/S0102-05362011...
).

Brazil occupies the eighth place in the production ranking with 4.4 million tons in 2011 in 72 thousand ha planted (FAO, 2013FAO - Organização das Nações Unidas para a Agricultura e Alimentação. <http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/S>. 7 Out. 2013.
http://faostat3.fao.org/faostat-gateway/...
).

In the Northeast, the crop is mainly cultivated by small rural producers and the Ceará state is the third largest producer (18.4%). However, in terms of value of production, in 2011, it occupied the second place, contributing with 24.4% of the total in the region (IBGE, 2013IBGE - Instituto Brasileiro de Geografia e Estatística. Censo Agropecuário 2006. <http://www.ibge.gov.br>. 25 Set. 2013.
http://www.ibge.gov.br...
).

In the composition of tomato fruits, there are changes that have been studied through some quality characteristics, such as: fruit size, acidity, soluble solids, content of sugars and texture, among others (Ferreira et al., 2010Ferreira, S. M. R.; Quadros, D. A.; Karkle, E. N. L.; Lima, J. J.; Tullio, L. T.; Freitas, R. J. S. Qualidade pós-colheita do tomate de mesa convencional e orgânico. Ciência e Tecnologia de Alimentos, v.30, p.858-864. 2010. http://dx.doi.org/10.1590/S0101-20612010000400004
http://dx.doi.org/10.1590/S0101-20612010...
).

Potassium (K2O) is the nutrient most absorbed by tomato plants and is essential for many physiological processes, such as photosynthesis, enzymatic activation and synthesis of proteins (Kanai et al., 2011Kanai, S.; Moghaieb, R. E.; El-Shemy, H. A.; Panigrahi, R.; Mohapatra, P. K.; Ito, J.; Nguyen, N. T.; Saneoka, H.; Fujita, K. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity. Plant Science, v.180, p.368-374, 2011. http://dx.doi. org/10.1016/j.plantsci.2010.10.011
http://dx.doi. org/10.1016/j.plantsci.20...
), as well as soluble solids (SS) and titratable acidity (TA) (Blanco & Folegatti, 2008Blanco, F. F.; Folegatti, M. V. Doses de N e K no tomateiro sob estresse salino: III. Produção e qualidade de frutos. Revista Brasileira de Engenharia Agrícola e Ambiental, v.12, p.122-127, 2008. http://dx.doi.org/10.1590/S1415-43662008000200003
http://dx.doi.org/10.1590/S1415-43662008...
).

K deficiency limits photosynthesis in the leaves and the transport of photoassimilates to the tomato fruits, causing reduction in fruit quality (Dorais et al., 2008Dorais, M.; David, L. E.; Papadopoulos, A. P. Tomato (Solanum lycopersicum) Health components: From the seed to the consumer. Phytochemistry Reviews, v.7, p.231-250. 2008. http://dx.doi.org/10.1007/s11101-007-9085-x
http://dx.doi.org/10.1007/s11101-007-908...
).

On the other hand, K excess can limit the absorption of Ca and Mg, ultimately leading to the deficiency of these elements (Vasconcelos et al., 2013Vasconcelos, D. V.; Sousa, V. F. de; Viana, T. V. de A.; Azevedo, B. M. de; Sousa, G. G. de; Cavalcante Júnior, J. A. H. Interação entre níveis de irrigação e fertirrigação potássica na cultura do maracujazeiro. Revista Irriga, v.18, p.160-170. 2013. http://dx.doi.org/10.15809/irriga.2013v18n1p160
http://dx.doi.org/10.15809/irriga.2013v1...
).

K can be applied through the conventional method, which consists in the application of the fertilizer directly in the soil along the sowing row (Sousa et al., 2013Sousa, G. G. de; Azevedo, B. M. de; Oliveira, J. R. R. de; Mesquita, T. de O.; Vianna, T. V. de A.; Ó, L. M. G do. Adubação potássica aplicada por fertirrigação e pelo método convencional na cultura do amendoim. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.1055-1060. 2013. http://dx.doi.org/10.1590/S1415-43662013001000005
http://dx.doi.org/10.1590/S1415-43662013...
), and through fertigation, which reduces the costs with labor in fertilization and increases the efficiency of the mineral element in the soil management (Pereira et al., 2010Pereira, M. G.; Loss, A.; Beutler, S. J.; Torres, J. L. R. Carbono, matéria orgânica leve e fósforo remanescente em diferentes sistemas de manejo do solo. Pesquisa Agropecuária Brasileira, v.45, p.508-514, 2010. http://dx.doi.org/10.1590/S0100-204X2010000500010
http://dx.doi.org/10.1590/S0100-204X2010...
).

This study aimed to evaluate the effect of K fertilization through drip fertigation and conventional application on the post-harvest quality of tomato fruits.

Material and Methods

The field experiment was conducted in 2011, in an area located at the Federal University of Ceará (UFC), Campus of Pici, in Fortaleza, CE, Brazil (3° 44’ 45’’ S; 38° 34’ 55’’ W; 20 m). According to Köppen’s classification, the climate of the region is Aw’, characterized as rainy tropical. The meteorological data collected along the experiment are shown in Table 1.

Table 1
Monthly data of the climatic variables along the experiment

The soil in the experimental area was classified as Red Yellow Argisol with sandy loam texture (EMBRAPA, 2006EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Sistema brasileiro de classificação de solos. 2.ed. Rio de Janeiro: Embrapa Solos, 2006. 306p.). Before installing the experiments, composite soil samples were collected in the layer of 0.0-0.2 m, with the aid of a Dutch auger; then, the samples were homogenized and subjected to laboratorial analyses for the estimation of physicalhydraulic characteristics. The mean values of field capacity and permanent wilting point were 7.52 and 4.52 g 100 g-1, respectively. Soil density was calculated as 1.43 g cm-3, with the respective values of clay, silt, fine sand and coarse sand of: 113, 96, 386 and 405 g kg-1.

The experiment was conducted using the persimmon tomato crop (Lycopersicon esculentum, Mill), hybrid “Dominador F1” of the company Topseed, which has an indeterminate growth habit.

Prior to the transplanting of the tomato seedlings, a deep plowing was performed in the area, followed by two crossharrowings; then, the area was cleaned in order to remove crop residues from the soil, because they could somehow interfere with the installation of the irrigation system and the application of the treatments. Then, the area was manually leveled and the furrows were made with height of 20 cm and width of 30 cm, in order to allow the deepening of the tomato roots.

Irrigations were performed through a drip system with mean flow rate of the emitters of 4.0 L h-1 and service pressure of 1.0 kgf cm-2.

The irrigation depth (Li) was estimated based on the reference evapotranspiration (ETo) of Penman-Monteith, obtained with the data of an automatic weather station, equipped with sensors and accessories necessary for the estimation of ETo through the Penman-Monteith methodology (Allen et al., 1998Allen, R. G.; Pereira, L. S.; Paes, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop water requirements. Roma: FAO, 1998. 328p. Irrigation and Drainage Paper, 56).

Sowing was manually performed on polystyrene trays with 128 cells on July 15, 2011; after 26 days from sowing, the seedlings were transplanted to the field, at spacing of 1.0 m between rows and 0.5 m between plants in the same row.

Tomato fertilization consisted basically in the application of 300, 200 and 400 kg ha-1 of N, P2O5 and K2O, according to IAC (1996)IAC - Instituto Agronômico de Campinas. Recomendações de adubação e calagem para o estado de São Paulo. 2.ed. São Paulo: IAC, 1996. 285p. Boletim Técnico, 100, respectively.

One third of the nitrogen was applied as basal fertilization, in the form of urea, corresponding to 11.11 g of urea per hole; the remaining two thirds of N were divided into 11 applications, via fertigation, which corresponded to the dose of 300 kg ha-1 of N. Phosphorus was totally applied as basal fertilization (56 g hole-1), in the form of single superphosphate, corresponding to the dose of 200 kg ha-1 of P2O5.

This experiment evaluated different K doses using KCl (60% of K2O) applied in two forms: through the irrigation system (fertigation with white potassium chloride) and conventionally, using red potassium chloride in the amounts of 200, 400 and 800 kg ha-1, which correspond respectively to the treatments: half the recommended dose, recommended dose and twice the dose recommended for the tomato crop, in both methods of application of the previously mentioned nutrient.

In the conventional fertilization, the three K2O doses were applied as follows: one third as basal, prior to transplanting, and two thirds as top-dressing 40 days after transplanting (DAT). On the other hand, K2O was not applied as basal fertilization in the fertigation, and all doses were applied through the irrigation system, divided into 11 applications performed according to the absorption rate of the crop, with the first application at 20 DAT.

Harvest occurred from 70 to 90 DAT, when the fruits were manually collected; after harvest, the fruits were placed in plastic bags, arranged in boxes and transported to the Laboratory of Physiology and Postharvest Technology of the Embrapa Tropical Agroindustry, where they were analyzed for quality: fruit firmness (FF), content of soluble solids (SS), titratable acidity (TA), potential of hydrogen (pH) and the ratio between soluble solids and titratable acidity (SS/TA).

Fruit firmness was measured in the equatorial region of whole fruits, using an automatic penetrometer with 6-mmdiameter tip, after removing a small portion of the periderm of the fruit with a knife. Firmness, the force necessary to break pulp resistance, was expressed in Newtons (N).

The procedure of measuring soluble solids (SS) consisted in mixing and completely homogenizing the pulp of the sampled fruits; then, part of the juice was filtered in filter paper and two drops of the mixture were placed in a digital refractometer (ATAGO PR-101), with measuring scale from 0 to 45 oBrix, with subdivision in decimal scale (AOAC, 1992AOAC - Association of Official Agricultural Chemists. Official methods of analysis of the Association of the Agricultural Chemists. 12.ed. Washington: AOAC, 1992. 52p.).

Titratable acidity (TA) was measured in duplicate by diluting 1.0 g of the pulp in 50 mL of distilled water; in the processing, titration was performed with NaOH (0.1 N) until reaching pH of 8.1, with the aid of an automatic digital potentiometric titrator with glass membrane (Mettler DL12). The results were expressed in percentage of citric acid, according to IAL (2005)IAL - Instituto Adolfo Lutz. Normas analíticas do Instituto Adolfo Lutz: Métodos químicos e físicos para análise de alimentos. São Paulo: IAL, 2005. 533p..

pH was measured directly in the juice of the samples of each one of the replicates using a digital potentiometer (DMPH-2 Digimed) with glass membrane, assessed with buffer solutions with pH of 7 and 4, according to AOAC (1992)AOAC - Association of Official Agricultural Chemists. Official methods of analysis of the Association of the Agricultural Chemists. 12.ed. Washington: AOAC, 1992. 52p..

This SS/TA ratio is represented by the quotient between soluble solids (SS) and titratable acidity (TA).

The experimental design was randomized blocks, with four replicates, in a 3 x 2 factorial scheme, with additional treatment for each one of the forms of K2O application, corresponding to the control treatment. The studied factors were K doses (D1 = 200; D2 = 400; D3 = 800 kg ha-1) and the form of application (F1 – Fertigation; F2 – Conventional fertilization), besides the additional treatment (control).

The obtained results were subjected to analysis of variance and regression, and, according to the level of significance, to F test for the doses and forms of application. Polynomial regression analysis was used at 0.01 or 0.05 probability level, selecting the polynomial models of best fit. The analyses were performed using the computational programs Assistat 7.6.

Results and Discussion

Table 2 shows the values of the analysis of variance for fruit firmness (FF), soluble solids (SS), potential of hydrogen (pH), titratable acidity (TA) and the SS/TA ratio (SS/TA) of the tomato crop as a function of doses of K fertilization through the conventional and fertigated methods. The different K doses (200, 400 and 800 kg ha-1) significantly influenced TA and SS/ TA at 0.05 probability level by F test, while for the forms of application (fertigated and conventional) there was no effect at 0.01 and 0.05 probability levels by F test on the variables studied in this experiment. The interaction between the factors significantly influenced only SS.

Table 2
Summary of the analysis of variance for fruit firmness (FF), soluble solids (SS), potential of hydrogen (pH), titratable acidity (TA) and SS/TA ratio (SS/TA) of the tomato crop under different K doses through fertigation and conventional application, at 90 DAT

The non-significant effect on the variables FF and pH has been observed by other authors, testing the supply of K to the tomato crop (Schwarz et al., 2013Schwarz, D.; Oztekin, G. B.; Tuzel, Y.; Bruckner, B.; Krumbein, A. Rootstocks can enhance tomato growth and quality characteristics at low potassium supply. Scientia Horticulture, v.143, p.70-79, 2013. http://dx.doi.org/10.1016/j.scienta.2012.06.013
http://dx.doi.org/10.1016/j.scienta.2012...
).

The lack of variation in fruit firmness can be explained by the pectin, which is a polymer that is determinant for the firmness of the vegetables (Paiva et al., 2009Paiva, E. P.; Lima, M. S.; Paixão, J. A. Pectina: Propriedades químicas e importância sobre a estrutura da parede celular de frutos durante o processo de maturação. Revista Iberoamericana de Polímero, v.10, p.196-221. 2009). Gel formation is the main functional feature of the pectin, which is essentially dependent on the characteristics of the environment, such as pH (Ganez et al., 2006Ganez, K.; Alexander, M.; Corredig, M. In situ study of flocculation of whey protein-stabilized emulsions caused by addition of high methoxyl pectin. Food hydrocolloid, v.20, p.293-298, 2006. http://dx.doi.org/10.1016/j.foodhyd.2005.02.022
http://dx.doi.org/10.1016/j.foodhyd.2005...
), which did not show significant difference. Sampaio & Fontes (1998)Sampaio, R. A.; Fontes, P. C. R. Qualidade de frutos de tomateiro fertirrigado com potássio em solo coberto com polietileno preto. Horticultura Brasileira, v.16, p.136-139, 1998. http://dx.doi.org/10.1590/S0102-05361998160000200009
http://dx.doi.org/10.1590/S0102-05361998...
tested two forms of application of K in the tomato crop and observed no significant effect on pH, a result similar to that of the present study.

The significant interaction and the comparative analysis of the means through Tukey test, of the different K2O doses in each method of application, for the variable soluble solids, are presented in Table 3.

Table 3
Mean values of the significant interactions of the analysis of variance referring to soluble solids (SS) of tomato fruits as a function of K doses (kg ha-1) through fertigation and conventional application

Comparing only the K application methods, for SS, only twice the recommended dose (800 kg ha-1) applied through fertigation showed superiority in relation to the conventional method; the other tested doses (200 and 400 kg ha-1) did not differ by Tukey test between both methods.

Zhao-Hui et al. (2008)Zhao-Hiu, L.; Li-Hua, J.; Xiao-Lin, L.; Hardter, H.; Wen-Jun, Z.; Yu-Lan, Z.; Dong-Fend, Z. Effect of N and K fertilizers on yield and quality of greenhouse vegetable crops. Pedosphere, v.18, p.496-502, 2008. http://dx.doi.org/10.1016/S1002-0160(08)60040-5
http://dx.doi.org/10.1016/S1002-0160(08)...
reinforce that K, when applied correctly, increases the quality of tomato fruits.

According to the regression analysis (Figure 1), plants fertilized through fertigation showed higher values of soluble solids in the fruits, compared with plants fertilized through the conventional form at the doses of 400 and 800 kg ha-1 of K2O. For this variable, the quadratic model showed the best fit.

Figure 1
Soluble solids (SS) in tomato fruits as a function of potassium doses through conventional application (●) and fertigation (∎)

According to these models, the plants would produce maximum soluble solids of 4.04 and 4.19 oBrix in the fruits with the estimated doses of 420.45 and 530.30 kg ha-1 of K2O, through conventional application and fertigation, respectively

The values of SS (4.15 and 4.27 oBrix) observed in the present study at the dose of 400 kg ha-1 of K2O with the conventional method and fertigation are consistent with the indication of Giordano et al. (2000)Giordano, L. B.; Silva, J. B. C.; Barbosa, V. Escolha de cultivares e plantio. In: Silva, J. B. C.; Giordano, L. B. (org.). Tomate para processamento industrial. Brasília: Embrapa Comunicação para Transferência de Tecnologia/Embrapa Hortaliças, 2000. p.36-59., who recommend a minimum value of 4.0 oBrix for the tomato processing industry. The values of SS obtained with the other tested doses remained below the recommendation of the authors and, in this case, the fruits can be used for fresh consumption.

Koetz et al. (2010)Koetz, M.; Masca, M. G. C. C.; Carneiro, L. C.; Ragagnin, V. A.; Sena Júnior, D. G.; Gomes Filho, R. R. Caracterização agronômica e oBrix em frutos de tomate industrial sob irrigação por gotejamento no sudoeste de Goiás. Revista Brasileira de Agricultura Irrigada, v.4, p.14-22, 2010. http://dx.doi.org/10.7127/rbai.v4n100022
http://dx.doi.org/10.7127/rbai.v4n100022...
point out that, the higher the content of oBrix in the fruits, the lower the consumption of energy to obtain the concentrated pulp in the industry. The content of soluble solids in the fruits, besides being a genetic characteristic of the cultivar, can be influenced by temperature, irrigation and fertilization (Raupp et al., 2009Raupp, D. S.; Gardingo, J. R.; Schebeski, L. S. dos; Amadeu, C. A.; Borsato, A. V. Processamento de tomate seco de diferentes cultivares. Acta Amazônica, v.39, p.415-422, 2009. http://dx.doi.org/10.1590/S0044-59672009000200021
http://dx.doi.org/10.1590/S0044-59672009...
).

According to the regression analysis (Figure 2), fertigated plants showed higher values of titratable acidity in the fruits, in comparison to those fertilized through the conventional method, for the dose of 800 kg ha-1 of K2O. The linear model showed the best fit for both methods.

Figure 2
Titratable acidity (TA) in tomato fruits as a function of potassium doses through conventional application (A) and fertigation (B)

Results contrary to those of the present study were reported by Blanco & Folegatti (2008)Blanco, F. F.; Folegatti, M. V. Doses de N e K no tomateiro sob estresse salino: III. Produção e qualidade de frutos. Revista Brasileira de Engenharia Agrícola e Ambiental, v.12, p.122-127, 2008. http://dx.doi.org/10.1590/S1415-43662008000200003
http://dx.doi.org/10.1590/S1415-43662008...
, who studied K fertilization in the tomato crop, and by Genúncio et al. (2010)Genúncio, G. C.; Silva, R. A. C.; Sá, N. M.; Zonta, E.; Araújo, A. P. Produção de cultivares de tomateiro em hidroponia e fertirrigação sob razões de nitrogênio e potássio. Horticultura Brasileira, v.28, p.446-452, 2010. http://dx.doi.org/10.1590/S0102-05362010000400012
http://dx.doi.org/10.1590/S0102-05362010...
, who tested different K concentrations in the tomato crop in hydroponic and fertigated systems.

It is observed (Figure 3) that the quadratic model showed the best fit for both forms of K application. According to the obtained models, the plants would exhibit maximum SS/TA ratios of 11.12 and 11.84, at the estimated doses of 300 and 465 kg ha-1 of K2O, through conventional application and fertigation, respectively.

Figure 3
Ratio between soluble solids and titratable acidity (SS/TA) in tomato fruits as a function of potassium doses through conventional application (A) and fertigation (B)

It should be remembered that tomato fruits can be considered as tasty when they have SS/TA ratio above 10 (Kader et al., 1978Kader, A. A.; Morris, L. L.; Stevens, M. A.; Albright-Holton, M. Composition and flavor quality of fresh market tomatoes as influenced by some post harvest handling procedures. Journal of American Society for Horticultural Science, v.113, p.742-745, 1978.). Guimarães et al. (2008)Guimarães, M. de A.; Silva, D. J. H. da; Fontes, P. C. R.; Mattedi, A. P. Produtividade e sabor dos frutos de tomate do grupo salada em função de podas. Bioscience Journal, v.24, p.32-38, 2008., working with the tomato crop, observed values higher than 10 for the SS/TA ratio, superior to those obtained at the lowest and highest dose of K2O.

Conclusions

  1. Potassium fertilization applied through fertigation (400 kg ha-1 of K2O) increases the content soluble solids and the ratio between soluble solids and titratable acidity of tomato fruits.

  2. Thus, fertigation is a more promising method for K application, because it allows a greater fractionation of the doses to be applied.

Literature Cited

  • Allen, R. G.; Pereira, L. S.; Paes, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop water requirements. Roma: FAO, 1998. 328p. Irrigation and Drainage Paper, 56
  • AOAC - Association of Official Agricultural Chemists. Official methods of analysis of the Association of the Agricultural Chemists. 12.ed. Washington: AOAC, 1992. 52p.
  • Blanco, F. F.; Folegatti, M. V. Doses de N e K no tomateiro sob estresse salino: III. Produção e qualidade de frutos. Revista Brasileira de Engenharia Agrícola e Ambiental, v.12, p.122-127, 2008. http://dx.doi.org/10.1590/S1415-43662008000200003
    » http://dx.doi.org/10.1590/S1415-43662008000200003
  • Dorais, M.; David, L. E.; Papadopoulos, A. P. Tomato (Solanum lycopersicum) Health components: From the seed to the consumer. Phytochemistry Reviews, v.7, p.231-250. 2008. http://dx.doi.org/10.1007/s11101-007-9085-x
    » http://dx.doi.org/10.1007/s11101-007-9085-x
  • EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. Sistema brasileiro de classificação de solos. 2.ed. Rio de Janeiro: Embrapa Solos, 2006. 306p.
  • FAO - Organização das Nações Unidas para a Agricultura e Alimentação. <http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/S>. 7 Out. 2013.
    » http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/S
  • Ferreira, S. M. R.; Quadros, D. A.; Karkle, E. N. L.; Lima, J. J.; Tullio, L. T.; Freitas, R. J. S. Qualidade pós-colheita do tomate de mesa convencional e orgânico. Ciência e Tecnologia de Alimentos, v.30, p.858-864. 2010. http://dx.doi.org/10.1590/S0101-20612010000400004
    » http://dx.doi.org/10.1590/S0101-20612010000400004
  • Ganez, K.; Alexander, M.; Corredig, M. In situ study of flocculation of whey protein-stabilized emulsions caused by addition of high methoxyl pectin. Food hydrocolloid, v.20, p.293-298, 2006. http://dx.doi.org/10.1016/j.foodhyd.2005.02.022
    » http://dx.doi.org/10.1016/j.foodhyd.2005.02.022
  • Genúncio, G. C.; Silva, R. A. C.; Sá, N. M.; Zonta, E.; Araújo, A. P. Produção de cultivares de tomateiro em hidroponia e fertirrigação sob razões de nitrogênio e potássio. Horticultura Brasileira, v.28, p.446-452, 2010. http://dx.doi.org/10.1590/S0102-05362010000400012
    » http://dx.doi.org/10.1590/S0102-05362010000400012
  • Giordano, L. B.; Silva, J. B. C.; Barbosa, V. Escolha de cultivares e plantio. In: Silva, J. B. C.; Giordano, L. B. (org.). Tomate para processamento industrial. Brasília: Embrapa Comunicação para Transferência de Tecnologia/Embrapa Hortaliças, 2000. p.36-59.
  • Guimarães, M. de A.; Silva, D. J. H. da; Fontes, P. C. R.; Mattedi, A. P. Produtividade e sabor dos frutos de tomate do grupo salada em função de podas. Bioscience Journal, v.24, p.32-38, 2008.
  • IBGE - Instituto Brasileiro de Geografia e Estatística. Censo Agropecuário 2006. <http://www.ibge.gov.br>. 25 Set. 2013.
    » http://www.ibge.gov.br
  • IAL - Instituto Adolfo Lutz. Normas analíticas do Instituto Adolfo Lutz: Métodos químicos e físicos para análise de alimentos. São Paulo: IAL, 2005. 533p.
  • IAC - Instituto Agronômico de Campinas. Recomendações de adubação e calagem para o estado de São Paulo. 2.ed. São Paulo: IAC, 1996. 285p. Boletim Técnico, 100
  • Kader, A. A.; Morris, L. L.; Stevens, M. A.; Albright-Holton, M. Composition and flavor quality of fresh market tomatoes as influenced by some post harvest handling procedures. Journal of American Society for Horticultural Science, v.113, p.742-745, 1978.
  • Kanai, S.; Moghaieb, R. E.; El-Shemy, H. A.; Panigrahi, R.; Mohapatra, P. K.; Ito, J.; Nguyen, N. T.; Saneoka, H.; Fujita, K. Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity. Plant Science, v.180, p.368-374, 2011. http://dx.doi. org/10.1016/j.plantsci.2010.10.011
    » http://dx.doi. org/10.1016/j.plantsci.2010.10.011
  • Koetz, M.; Masca, M. G. C. C.; Carneiro, L. C.; Ragagnin, V. A.; Sena Júnior, D. G.; Gomes Filho, R. R. Caracterização agronômica e oBrix em frutos de tomate industrial sob irrigação por gotejamento no sudoeste de Goiás. Revista Brasileira de Agricultura Irrigada, v.4, p.14-22, 2010. http://dx.doi.org/10.7127/rbai.v4n100022
    » http://dx.doi.org/10.7127/rbai.v4n100022
  • Paiva, E. P.; Lima, M. S.; Paixão, J. A. Pectina: Propriedades químicas e importância sobre a estrutura da parede celular de frutos durante o processo de maturação. Revista Iberoamericana de Polímero, v.10, p.196-221. 2009
  • Pereira, M. G.; Loss, A.; Beutler, S. J.; Torres, J. L. R. Carbono, matéria orgânica leve e fósforo remanescente em diferentes sistemas de manejo do solo. Pesquisa Agropecuária Brasileira, v.45, p.508-514, 2010. http://dx.doi.org/10.1590/S0100-204X2010000500010
    » http://dx.doi.org/10.1590/S0100-204X2010000500010
  • Raupp, D. S.; Gardingo, J. R.; Schebeski, L. S. dos; Amadeu, C. A.; Borsato, A. V. Processamento de tomate seco de diferentes cultivares. Acta Amazônica, v.39, p.415-422, 2009. http://dx.doi.org/10.1590/S0044-59672009000200021
    » http://dx.doi.org/10.1590/S0044-59672009000200021
  • Sampaio, R. A.; Fontes, P. C. R. Qualidade de frutos de tomateiro fertirrigado com potássio em solo coberto com polietileno preto. Horticultura Brasileira, v.16, p.136-139, 1998. http://dx.doi.org/10.1590/S0102-05361998160000200009
    » http://dx.doi.org/10.1590/S0102-05361998160000200009
  • Santos, F. F. B. dos; Ribeiro, A.; Siqueira, W. J.; Melo, A. M. T de. Desempenho agronômico de híbridos F1 de tomate de mesa. Horticultura Brasileira, v.29, p.304-310, 2011. http://dx.doi.org/10.1590/S0102-05362011000300008
    » http://dx.doi.org/10.1590/S0102-05362011000300008
  • Schwarz, D.; Oztekin, G. B.; Tuzel, Y.; Bruckner, B.; Krumbein, A. Rootstocks can enhance tomato growth and quality characteristics at low potassium supply. Scientia Horticulture, v.143, p.70-79, 2013. http://dx.doi.org/10.1016/j.scienta.2012.06.013
    » http://dx.doi.org/10.1016/j.scienta.2012.06.013
  • Sousa, G. G. de; Azevedo, B. M. de; Oliveira, J. R. R. de; Mesquita, T. de O.; Vianna, T. V. de A.; Ó, L. M. G do. Adubação potássica aplicada por fertirrigação e pelo método convencional na cultura do amendoim. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.1055-1060. 2013. http://dx.doi.org/10.1590/S1415-43662013001000005
    » http://dx.doi.org/10.1590/S1415-43662013001000005
  • Vasconcelos, D. V.; Sousa, V. F. de; Viana, T. V. de A.; Azevedo, B. M. de; Sousa, G. G. de; Cavalcante Júnior, J. A. H. Interação entre níveis de irrigação e fertirrigação potássica na cultura do maracujazeiro. Revista Irriga, v.18, p.160-170. 2013. http://dx.doi.org/10.15809/irriga.2013v18n1p160
    » http://dx.doi.org/10.15809/irriga.2013v18n1p160
  • Zhao-Hiu, L.; Li-Hua, J.; Xiao-Lin, L.; Hardter, H.; Wen-Jun, Z.; Yu-Lan, Z.; Dong-Fend, Z. Effect of N and K fertilizers on yield and quality of greenhouse vegetable crops. Pedosphere, v.18, p.496-502, 2008. http://dx.doi.org/10.1016/S1002-0160(08)60040-5
    » http://dx.doi.org/10.1016/S1002-0160(08)60040-5

Publication Dates

  • Publication in this collection
    Oct 2016

History

  • Received
    17 Nov 2015
  • Accepted
    17 Aug 2016
Unidade Acadêmica de Engenharia Agrícola Unidade Acadêmica de Engenharia Agrícola, UFCG, Av. Aprígio Veloso 882, Bodocongó, Bloco CM, 1º andar, CEP 58429-140, Campina Grande, PB, Brasil, Tel. +55 83 2101 1056 - Campina Grande - PB - Brazil
E-mail: revistagriambi@gmail.com