Acessibilidade / Reportar erro

Determinación de la tenacidad a la fractura J en laminados fibra-metal del tipo CARALL con láminas de aluminio 6061 y 1050

Determination of the fracture toughness J on CARALL type fiber-metal laminates with aluminium 6061 and 1050

RESUMEN

La determinación de la tenacidad a la fractura en materiales compuestos híbridos y laminados fibra-metal - FML (Fiber Metal Laminates) - resulta muy importante para poder realizar un análisis de integridad estructural que permita estimar la tolerancia al daño y la resistencia remanente del material frente a la propagación de una fisura. Dicha evaluación debe realizarse tanto en estructuras aeronáuticas como navales que utilizan compuestos FML del tipo CARALL (CArbonReinforcedAluminumLaminates). En este trabajo se presenta la determinación experimental de la tenacidad a la fractura en términos del parámetro J utilizando probetas compactas C (T) en dos tipos de material compuesto laminado con láminas de aluminio 6061-O en un caso y láminas de aluminio 1050 en otro y fibras de carbono NCT-301 embebidas en resina epoxy para ambos materiales. Los resultados indican que la adaptación de las técnicas de ensayo de tenacidad a la fractura elastoplástica utilizadas son aceptables para la determinación de la tenacidad J en compuestos del tipo CARALL. Por su parte el análisis comparativo entre los dos tipos de material compuesto utilizado permite observar las diferencias en la respuesta a la propagación de fisuras.

Palabras clave
compuestos; tenacidad; fractura; fisura; delaminación

ABSTRACT

Determination of fracture toughness in hybrid composites, fiber-metal laminates, FML (Fiber Metal Laminates) is very important to perform an analysis of structural integrity to estimate damage tolerance and residual strength of the material against the propagation of a crack This evaluation should be done in both naval and aircraft structures using FML CARALL compounds (CArbon Reinforced Aluminum Laminates) type. In this work, the experimental determination of fracture toughness is presented in terms of the parameter J using compact specimens C (T) on the laminated composite with foils of 6061-O in one case and 1050 on the other one and carbon fibers NCT- 301 embedded in epoxy resin for both materials. The results indicate that the adaptation of the elasto-plastic fracture toughness techniques are acceptable to for determining J toughness on CARALL type compounds [3-4]. A comparative analysis among the two type of composite materials reveals the differences in the response to crack propagation.

Keywords
composites; toughness; fracture; crack; delamination

1. INTRODUCCIÓN

Los materiales compuestos híbridos, laminados fibra-metal, (Fiber Metal Laminates FML) [11 VOGELESANG, B., “Development of new hybrid material (ARALL) for aircraft structure”. Delft University of Technology”, Industrial Engineering. Chemical Producion Resourses Development, v. 22, pp. 492-496, 1983.], consisten en láminas delgadas de aluminio colaminadas en forma alternada con capas de fibras de carbono unidireccionales embebidas en una matriz de resina epoxy. Los compuestos FML son materiales livianos, con elevada resistencia a la propagación de fisuras, resistencia al daño acumulado y baja absorción de humedad. Tienen un gran nivel de aplicación en la industria tanto en la industria aeroespacial como naval y un potencial de aplicación en diferentes estructuras vehiculares [22 PALKOWSKI H., LANGE G., “Creation of tailored high strength hybrid sandwich structures”, Advanced Materials Research, v.22, pp. 27-36, 2007.]. En estos materiales la propagación de fisuras tiene lugar mediante el mecanismo denominado “puenteo de fibra” (fiber-bridging) [33 LIN, C., KAO, P., “ Effect of fibre bridging on the fatigue crack propagation on carbon fibre reinforced aluminium laminates”, Materials Science & Engineering, v. 190, pp. 65-72, 1995.].

Cuando el extremo de una fisura se propaga en forma perpendicular a la fibra tal propagación se realiza preferentemente a través de las láminas de aluminio, acompañada por una delaminación controlada, entre las láminas metálicas y la matriz polimérica. Esto causa poco daño en las fibras que permanecen mayoritariamente intactas detrás del extremo de la fisura. Este mecanismo es clave para reducir el factor de intensidad de tensiones en el extremo de la fisura, disminuyendo su velocidad de propagación.

La aplicación de este tipo de material compuesto en estructuras de aeronaves, y también en estructuras navales, utiliza un criterio de diseño avanzado que incorpora el concepto de daño tolerado. Sin dudas este criterio requiere el conocimiento de las características de propagación por fatiga de los componentes o partes estructurales y además se necesita conocer el comportamiento de tenacidad a la fractura para establecer las condiciones de tamaño crítico de fisuras bajo diferentes condiciones de carga y resistencia residual. Sin embargo la resistencia residual, para la condición de falla, es un evento complejo que involucra múltiples mecanismos de falla, tales como deformación plástica, delaminación estática, crecimiento de fisura en la lámina de metal y rotura de fibra [44 MACHERET, Y., BUCCI, R., KULAK, M., “Metal plasticity and specimen size effects in evaluation of ARALL laminates notched panel residual strength”, Anales del 8th European Conference on Fracture, pp. 288-295, 1990.,55 JIN, Z., BATRA, R., “Residual strength of centrally cracked metal/fiber composite laminates”, Materials Science and Engineering, v. A216, pp. 117-124, 1996.].

En modelos adoptados por varios autores la tenacidad a la fractura en compuestos FML ha sido determinada utilizando la mecánica de fractura lineal-elástica a partir de las normas generales de ensayo, por ejemplo la norma ASTM E-561 [66 ASTM- E561-05, “Standard test methods for K-R curve determination”, Annual Book of ASTM Standards, American Society for Testing and Materials, USA, 2005.].

Cuando se obtiene la respuesta del material en un registro carga-desplazamiento, con diferentes tipos de probetas normalizadas, aparece un comportamiento que se aparta de la linealidad con indicios de cierto crecimiento estable de fisura e inestabilidades del tipo “pop-in” o inmediatamente seguido de la condición de fractura.

Esto conduce, por analogía con los materiales metálicos, a la utilización de las técnicas de ensayo de la mecánica de fractura elasto-plástica (Integral J y CTOD) en compuestos FML, aplicando por ejemplo la metodología de la norma ASTM E-1820 para poder determinar la tenacidad a la fractura crítica [77 CASTRODEZA, E., IPIÑA, J., BASTIAN,F., “Experimental techniques for fracture instability toughness determination of unidirectional fibre metal laminates”, Fatigue & Fracture of Engineering Materials and Structures, v. 25, n. 11, pp. 999-1008, 2002.,88 ASTM- E1820-01. “Standard Test Methods for Measurement of Fracture Toughness”. Annual Book of ASTM Standards, American Society for Testing and Materials, USA, 2001.].

Estos criterios de tenacidad a la fractura con sus técnicas de ensayo presentan limitaciones respecto de la representatividad para determinar la resistencia residual en materiales compuestos FML que presentan anisotropía mecánica, espesores delgados, dependencia de la geometría y un mecanismo de fractura que asocia la propagación metálica y delaminación entre la lámina de metal y las capas de resina reforzada con fibras no metálicas.

En este trabajo se presenta una determinación experimental de la tenacidad a la fractura en términos del parámetro J utilizando probetas C(T) de acuerdo con ASTM en material FML con láminas metálicas de aluminio y fibras de carbono embebidas en resina epoxy.

Asimismo se ha caracterizado a los materiales bajo análisis a través de ensayos de tracción.

2. MATERIALES Y MÉTODOS

2.1 Material

Se han ensayado dos compuestos FML fabricados con láminas metálicas de aluminio 6061-O y 1050, cuyas propiedades se observan en la Tabla 1, con fibra de carbono NCT-301 unidireccional, impregnada en resina epoxy.

Tabla 1
Propiedades mecánicas de los aluminios utilizados.

En las Tablas 1 y 2 se presentan respectivamente las propiedades mecánicas de los aluminios y de la fibra de carbono utilizados en la fabricación del compuesto FML [99 RÍOS, J., CHOMIK, E., BALDERRAMA, J., et al., “Determination of Fracture Toughness J on Fiber-Metal Laminate Type CARALL with Aluminum 6061”, Procedia Materials Science, v. 9, pp. 530-537, 2015].

Tabla 2
Propiedades mecánicas de la fibra de carbono tipo NCT-301

Se utilizó la resina presente en la fibra de carbono (preimpregnada) en la colaminación entre las capas de fibra unidireccional y aleación de aluminio para fabricar el material compuesto.

El laminado para uso experimental se elaboró en placas cuadradas de 120 mm de lado según las secuencia de apilamiento o arreglo representada por medio de la indicación m/n (m = n + 1), siendo m la cantidad de capas de aluminio y n la cantidad de capas de fibras impregnadas en resina. En este trabajo se utiliza un arreglo 7/6 (Al-90-Al-0-Al-90-Al-90-Al-0-Al-90-Al) con Al 6061-O, siendo 0 y 90 la orientación de la fibra de carbono respecto a la dirección de laminación de la aleación de aluminio, y un arreglo similar 4/3 elaborado con Al 1050. El conformado del compuesto se realizó con saco de vacío y el curado en autoclave a una presión de 6 bar y a una temperatura de 178 ºC tal como se puede observar en el registro de la Figura 1.

Figura 1
Ciclo de curado en autoclave. Rampa de Presión y Temperatura.

2.2 Ensayos de tracción y obtención del parámetro integral J

Para los ensayos de tracción se utilizaron probetas de sección rectangular constante y con láminas de aluminio aplicadas sobre los extremos con resina epoxi, a los efectos de neutralizar los efectos de la fuerza de las mordazas del equipo, tal como puede observarse en la Figura 2, utilizando la metodología de la norma ASTM E-8.

Figura 2
Probetas de tracción con apliques en los extremos.

Se ha utilizado la metodología de ensayo elasto-plástica para la determinación del parámetro J de acuerdo con los lineamientos de la norma ASTM 1820 [88 ASTM- E1820-01. “Standard Test Methods for Measurement of Fracture Toughness”. Annual Book of ASTM Standards, American Society for Testing and Materials, USA, 2001.]

Las probetas compactas C(T) [88 ASTM- E1820-01. “Standard Test Methods for Measurement of Fracture Toughness”. Annual Book of ASTM Standards, American Society for Testing and Materials, USA, 2001.,99 RÍOS, J., CHOMIK, E., BALDERRAMA, J., et al., “Determination of Fracture Toughness J on Fiber-Metal Laminate Type CARALL with Aluminum 6061”, Procedia Materials Science, v. 9, pp. 530-537, 2015], utilizadas para el ensayo de J, se fabricaron mediante mecanizado por control numérico, según lo especificado por norma y detallado en la Figura 3, obteniéndose probetas como se ve en la Figura 4, de acuerdo con ASTM. Se utilizó una probeta por cada uno de los materiales estudiados. Si bien la norma exige mayor número de probetas para el trazado de la curva J-R por el método multiprobeta, en este caso, por las características del material, se calcula la tenacidad en términos de Jc, es decir J al clivaje, con lo que se requiere la determinación de un solo punto del registro carga (P) - desplazamiento (δ). Más adelante, en la descripción de las ecuaciones de cálculo de J, se detalla la utilización de estas curvas.

Figura 3
Probeta Tipo CT; W= 50 mm, a0= 25 mm
Figura 4
Probeta Tipo CT; W= 50 mm, luego de mecanizada.

A efectos de lograr una concentración de tensiones similar al correspondiente a una prefisura por fatiga que indica la norma, la entalla de la probeta ha sido terminada con un radio de 0,15 mm en su extremo, que se observa en detalle en la Figura 5.

Figura 5
Modelo de punta de entalla de radio 0,15 mm adoptado.

Para la realización del ensayo se ha utilizado una máquina de ensayos servo-hidráulica donde la medición del desplazamiento en la línea de aplicación de la carga se ha efectuado por medio de un sensor de posición del cabezal. El cálculo del valor de la integral J es calculado de acuerdo con ASTM [88 ASTM- E1820-01. “Standard Test Methods for Measurement of Fracture Toughness”. Annual Book of ASTM Standards, American Society for Testing and Materials, USA, 2001.] como la suma de las componentes elástica y plástica de acuerdo con la ecuación (1):

J = J e l + J p l (1)

Dónde:

Jel = Componente elástica de J.

Jpl = Componente plástica de J.

La componente elástica se calcula con la ecuación (2):

J e l = K I 2 / E (2)

Siendo:

KI calculada de acuerdo con la expresión establecida en la norma ASTM [88 ASTM- E1820-01. “Standard Test Methods for Measurement of Fracture Toughness”. Annual Book of ASTM Standards, American Society for Testing and Materials, USA, 2001.].

Luego, la componente plástica de J se obtiene utilizando la ecuación (3):

J p l = η A p l / b 0 B (3)

Siendo:

η = 2 + 0 , 522 b 0 / w (4)

η = Constante correspondiente al tipo de probeta, en este caso compacta C(T).

b0 = W-a0 (Figura 3)

Apl = Area plástica área bajo la curva del registro carga (P) - desplazamiento de la línea de aplicación de la carga (δ), ver Figura 6 y Figura 7, en el punto final de inestabilidad de la carga o al primer “pop-in”.

Figura 6
Diagrama de ensayo de la probeta compacta material 7/6 Al 6061-O
Figura 7
Diagrama de ensayo de la probeta compacta material 4/3 Al 1050

B = Espesor útil, siendo en este caso el espesor útil Bn = espesor total B, por no haber entallas laterales.

Los anexos de la norma ASTM E-1820 pueden ser utilizados para describir los detalles de la disposición experimental, la fabricación de probetas compactas C(T) y los desarrollos matemáticos utilizados a lo largo de este trabajo.

3. RESULTADOS

La Tabla 3 muestra las propiedades mecánicas determinadas en el ensayo de tracción de los dos compuestos CARALL.

Tabla 3
Propiedades mecánicas obtenidas de los materiales estudiados

La Tabla 4 resume los valores de tenacidad a la fractura obtenidos. Dado que en los análisis de daño tolerado se aplica una metodología basada en el factor de intensificación de tensiones K, la Tabla 4 también contiene el valor de K denominado crítico (Kc). Dicho parámetro se obtiene a partir de Jc y utilizando a ecuación (2) para obtener el valor de Kc.

Tabla 4
Valores de tenacidad a la fractura críticos

4. DISCUSION

Se observa la mejora sustancial de la resistencia a la tracción respecto de los aluminios con que fueron construidos los compuestos. El comportamiento que se ha observado en los compuestos CARALL en ensayos de fractura está vinculado con un crecimiento monótono de la carga hasta un valor a partir del cual se produce la completa inestabilización del material y una caída abrupta de la carga sin recuperación de la misma. Previo a alcanzar el valor crítico de carga o inestabilidad se notó a través del seguimiento óptico un efecto de redondeo de la punta de la entalla vinculado con el proceso de deformación plástica en la lámina metálica.

Dado el comportamiento verificado, con ausencia de pequeñas inestabilidades del tipo “pop-in”, se utilizó la determinación de la tenacidad a la fractura de inestabilidad o crítica de acuerdo con la norma ASTM E- 1820 [88 ASTM- E1820-01. “Standard Test Methods for Measurement of Fracture Toughness”. Annual Book of ASTM Standards, American Society for Testing and Materials, USA, 2001.] y utilizando para el cálculo de los valores de Jc las ecuaciones (1) y (2), en base a los diagramas obtenidos que se pueden observar en las Figuras 6 y 7.

Finalmente podemos inferir que los resultados obtenidos de tenacidad a la fractura son consistentes, para el compuesto CARALL utilizado, con los de otros compuestos laminados del mismo tipo o del tipo ARALL o GLARE informados en la literatura [11 VOGELESANG, B., “Development of new hybrid material (ARALL) for aircraft structure”. Delft University of Technology”, Industrial Engineering. Chemical Producion Resourses Development, v. 22, pp. 492-496, 1983.

2 PALKOWSKI H., LANGE G., “Creation of tailored high strength hybrid sandwich structures”, Advanced Materials Research, v.22, pp. 27-36, 2007.

3 LIN, C., KAO, P., “ Effect of fibre bridging on the fatigue crack propagation on carbon fibre reinforced aluminium laminates”, Materials Science & Engineering, v. 190, pp. 65-72, 1995.

4 MACHERET, Y., BUCCI, R., KULAK, M., “Metal plasticity and specimen size effects in evaluation of ARALL laminates notched panel residual strength”, Anales del 8th European Conference on Fracture, pp. 288-295, 1990.
-55 JIN, Z., BATRA, R., “Residual strength of centrally cracked metal/fiber composite laminates”, Materials Science and Engineering, v. A216, pp. 117-124, 1996., 1010 LIN, C., KAO, P., YANG,F., “Fatigue Behaviour of Carbon Fibre Reinforced Aluminium Laminates”, Composites, v. 22, n. 2, pp. 135-141, 1991.].

El comportamiento no lineal que se ha puesto en evidencia en el ensayo de tenacidad a la fractura, realizado con probetas ASTM C(T), del material CARALL fabricado muestra la viabilidad de utilizar la metodología de tenacidad a la fractura elasto-plástica. No obstante es necesario un exhaustivo y sistemático trabajo de validación para poder predecir la resistencia remanente en elementos estructurales reales a partir de resultados experimentales con probetas de tamaño reducido así como establecer una normativa específica para la caracterización de la tenacidad a la fractura en compuestos FML.

5. CONCLUSIONES

Se ha determinado la tenacidad a la fractura crítica en compuestos FML CARALL fabricados con láminas de distintos aluminios y distintos arreglos con fibra de carbono de diversos espesores. Los valores obtenidos de Jc son consistentes con los antecedentes de la bibliografía y se puede inferir la aplicabilidad de la metodología elasto-plástica para la caracterización de compuestos FML. No obstante es necesario seguir profundizando la validación para elementos estructurales de mayor tamaño para una aplicabilidad confiable en el análisis de daño tolerable.

En el desarrollo del ensayo de J no se ha puesto en evidencia el crecimiento estable de fisura previo a la instabilidad. Al alcanzar el valor crítico la probeta se inestabiliza en forma completa sin posibilidades de recuperación del proceso monótono de carga. En consecuencia para poder observar el mecanismo de rotura del compuesto FML es necesario realizar un ensayo de propagación cíclica de fisura.

Estos resultados pueden ser tomados como un aporte de experiencia en técnicas de ensayo de fractura aplicadas a este tipo de compuestos, tendientes a optimizar la metodología que derivará en normas de ensayos específicas para estos materiales, a fin de utilizar los resultados como dato de entrada confiable para los análisis de defecto tolerado.

AGRADECIMIENTOS

Los autores agradecen al personal técnico del Departamento de Materiales UAM-CNEA, Argentina.

BIBLIOGRAFÍA

  • 1
    VOGELESANG, B., “Development of new hybrid material (ARALL) for aircraft structure”. Delft University of Technology”, Industrial Engineering. Chemical Producion Resourses Development, v. 22, pp. 492-496, 1983.
  • 2
    PALKOWSKI H., LANGE G., “Creation of tailored high strength hybrid sandwich structures”, Advanced Materials Research, v.22, pp. 27-36, 2007.
  • 3
    LIN, C., KAO, P., “ Effect of fibre bridging on the fatigue crack propagation on carbon fibre reinforced aluminium laminates”, Materials Science & Engineering, v. 190, pp. 65-72, 1995.
  • 4
    MACHERET, Y., BUCCI, R., KULAK, M., “Metal plasticity and specimen size effects in evaluation of ARALL laminates notched panel residual strength”, Anales del 8th European Conference on Fracture, pp. 288-295, 1990.
  • 5
    JIN, Z., BATRA, R., “Residual strength of centrally cracked metal/fiber composite laminates”, Materials Science and Engineering, v. A216, pp. 117-124, 1996.
  • 6
    ASTM- E561-05, “Standard test methods for K-R curve determination”, Annual Book of ASTM Standards, American Society for Testing and Materials, USA, 2005.
  • 7
    CASTRODEZA, E., IPIÑA, J., BASTIAN,F., “Experimental techniques for fracture instability toughness determination of unidirectional fibre metal laminates”, Fatigue & Fracture of Engineering Materials and Structures, v. 25, n. 11, pp. 999-1008, 2002.
  • 8
    ASTM- E1820-01. Standard Test Methods for Measurement of Fracture Toughness”. Annual Book of ASTM Standards, American Society for Testing and Materials, USA, 2001.
  • 9
    RÍOS, J., CHOMIK, E., BALDERRAMA, J., et al, “Determination of Fracture Toughness J on Fiber-Metal Laminate Type CARALL with Aluminum 6061”, Procedia Materials Science, v. 9, pp. 530-537, 2015
  • 10
    LIN, C., KAO, P., YANG,F., “Fatigue Behaviour of Carbon Fibre Reinforced Aluminium Laminates”, Composites, v. 22, n. 2, pp. 135-141, 1991.

Fechas de Publicación

  • Publicación en esta colección
    2018

Histórico

  • Recibido
    01 Ago 2017
  • Acepto
    13 Dic 2017
Laboratório de Hidrogênio, Coppe - Universidade Federal do Rio de Janeiro, em cooperação com a Associação Brasileira do Hidrogênio, ABH2 Av. Moniz Aragão, 207, 21941-594, Rio de Janeiro, RJ, Brasil, Tel: +55 (21) 3938-8791 - Rio de Janeiro - RJ - Brazil
E-mail: revmateria@gmail.com