Acessibilidade / Reportar erro

Vibrações devidas ao caminhar e às atividades aeróbicas: uma verificação teórica

Resumos

Este trabalho examina a verificação estrutural referente às vibrações em pisos de edifícios urbanos induzidas pelas atividades humanas quepossam motivar algum sentimento de desconforto aos usuários. Apresenta as recomendações normativas vigentes no país relativas ao conforto humano em estruturas na presença de vibrações induzidas pelo próprio usuário em suas atividades cotidianas tais como a prática docaminhar em ambientes residenciais ou comerciais e de atividades aeróbicas em ambientes diversos, como dançar, saltar e correr. Finaliza oferecendo informações relevantes e eminentemente práticas, possíveis de serem exercitadas manualmente ou com o mínimo de recursoscomputacionais pelos profissionais envolvidos, permitindo verificar na fase inicial de projeto a eventual necessidade de maiores cuidados nodimensionamento estrutural de pisos sujeitos as vibrações devidas às atividades humanas.

vibrações em pavimentos; conforto humano; aspectos normativos


This paper examines the structural design aspects related to vibrations on floors of urban buildings, induced by human activities that can motivate some discomfort for the users thereof. It presents the Brazilian normative regulations concerning human comfort in structures in the presence of vibrations induced by the users in their daily activities, like walking in places such as houses or offices, and aerobic activities such as dancing, jumping and running. The paper concludes by offering relevant and eminently practical information ready to be used manually or with minimal computer resources by the professionals involved, allowing for verification in the initial design phase regarding the eventual need of careful verifications in the structural design of floors subject to vibrations due to human activities.

vibrations on floors; human comfort; normative aspects


Vibrações devidas ao caminhar e às atividades aeróbicas: uma verificação teórica

L. A. Pretti; W. G. Ferreira; A. F. G. Calenzani

Centro Tecnológico, Universidade Federal do Espírito Santo, Vitória, ES, Brasil. lap.vix@terra.com.br, walnorio@gmail.com, afcalenzani@gmail.com

RESUMO

Este trabalho examina a verificação estrutural referente às vibrações em pisos de edifícios urbanos induzidas pelas atividades humanas quepossam motivar algum sentimento de desconforto aos usuários. Apresenta as recomendações normativas vigentes no país relativas ao conforto humano em estruturas na presença de vibrações induzidas pelo próprio usuário em suas atividades cotidianas tais como a prática docaminhar em ambientes residenciais ou comerciais e de atividades aeróbicas em ambientes diversos, como dançar, saltar e correr. Finaliza oferecendo informações relevantes e eminentemente práticas, possíveis de serem exercitadas manualmente ou com o mínimo de recursoscomputacionais pelos profissionais envolvidos, permitindo verificar na fase inicial de projeto a eventual necessidade de maiores cuidados nodimensionamento estrutural de pisos sujeitos as vibrações devidas às atividades humanas.

Palavras-chave: vibrações em pavimentos, conforto humano, aspectos normativos.

1. Introdução

Examinando-se as Normas Brasileiras relativas à elaboração de projetos para as estruturas de concreto armado (ABNT NBR 6118:2007) e estruturas de aço ou mistas de aço e concreto (ABNT NBR 8800:2008), observa-se que elas não tratam especificamente o tema referente às vibrações nestas estruturas, no que se refere aos procedimentos de verificação para obtenção das respostas devidas aos carregamentos dinâmicos induzidos pelas atividades humanas ocupacionais.

Na sequência é extraído o que consta em cada uma destas normas com relação ao tratamento recomendado para a análise de vibrações em pisos devidas às atividades exercidas por seus usuários e posteriormente são feitas considerações comparativamente com a ISO 2631:1997/2003, com a exemplificação de uma aplicação numérica avaliando e concluindo quanto à validade da proposta teórica apresentada.

2. A abordagem nas normas nacionais

2.1 ABNT NBR 6118-2007 - projeto de estruturas de concreto - procedimento

Esta norma, nos itens 3.2.8 e 11.4.2.3, apresenta a definição de estado limite de vibrações excessivas (ELS-VE), como sendo aquele que ocorre quando "a estrutura, pelas suas condições de uso, está sujeita a choques ou vibrações, os respectivos efeitos devem ser considerados na determinação das solicitações e a possibilidade de fadiga deve ser considerada no dimensionamento dos elementos estruturais" remetendo em seguida para a sua seção 23.

Mais a frente, no item 13.3, parágrafo a, ela volta a se referir às vibrações e novamente remete para a seção 23, mas apresentando neste item os dados parcialmente transcritos na Tabela 2.1 deste artigo, ou seja, o efeito das vibrações devidas às cargas acidentais na aceitabilidade sensorial dos usuários. Na seção 23, mais especificamente no seu item 23.3 - Estado limite de vibrações excessivas, a ABNT NBR 6118:2007 recomenda que as análises referentes a vibrações nas estruturas de concreto devem ser feitas em regime linear com as frequências naturais fnat sendo mantidas distantes da frequência crítica fcrit da estrutura; esta é função do uso a que se destina a edificação, sendo especificado um limite mínimo de fnat > 1,2 fcrit, como recomendado na Tabela 2.2.

Para o controle dessas vibrações, sugere-se que o comportamento da estrutura seja alterado, modificando-se alguns fatores, dentre eles, as ações dinâmicas de excitação ou a frequência natural da estrutura com a alteração da rigidez ou da massa da estrutura ou então das características de amortecimento.

Fora isso, redireciona a análise para as normas internacionais nos casos em que a análise dinâmica necessite de cuidados mais específicos, a critério do analista. (ABNT NBR 6118:2007)

2.2 ABNT NBR 8800:2008 - projeto e execução de estruturas de aço e de estruturas mistas de aço e concreto de edifícios - procedimento

Esta norma, na seção 11 - Vibrações, em seu item 11.4.1, explicitamente se refere a vibrações recomendando que "Sistemas de pisos sujeitos à vibrações, tais como o de grandes áreas que não possuem divisórias ou outros elementos de amortecimento, devem ser verificados de forma a se evitar o aparecimento de vibrações transientes inaceitáveis, devidas ao caminhar de pessoas ou a outras fontes conforme o Anexo L".

Em seu Anexo L, a ABNT NBR 8800:2008 coloca comentários gerais de caráter introdutório e remete para o item 4.7.7.3.3, "- Combinações frequentes de serviço" onde se define que "as combinações frequentes são aquelas que se repetem muitas vezes durante o período de vida da estrutura, da ordem de 105 em 50 anos, ou que tenham duração total igual a uma parte não desprezível desse período, da ordem de 5%".

E essas combinações podem ser utilizadas para os estados limites reversíveis, ou seja, aqueles que não causam danos permanentes à estrutura ou a outros componentes da construção, incluindo os relacionados ao conforto dos usuários. Se conclui recomendando que em nenhum caso a frequência natural da estrutura do piso pode ser inferior a 3 Hz."

Seguindo, apresentam-se procedimentos gerais que devem ser contemplados para o que essa norma admite como uma avaliação precisa. Estes, são transcritos a seguir; afirma-se que no caso de vibrações em pisos, na análise dinâmica devem ser considerados, minimamente, os critérios abaixo transcritos:

a) as características e a natureza das excitações dinâmicas, como, por exemplo, as decorrentes do caminhar das pessoas e de atividades rítmicas;

b) os critérios de aceitação para conforto humano em função do uso e ocupação das áreas do piso;

c) a frequência natural da estrutura do piso;

d) a razão de amortecimento modal;

e) os pesos efetivos do piso.

Finalizando, recomendam-se textos de origem internacional que podem interessar nesta análise, mais precisamente, no seu anexo S-4. (ABNT NBR 8800:2008)

3. A abordagem internacional

3.1 As Normas ISO 2631-1:1997 e 2631-2:2003

A norma internacional ISO 2631:1997/2003, consultada para subsidiar os argumentos deste artigo técnico, define os diversos métodos aplicáveis à medição dos níveis de vibrações periódicas, aleatórias e transientes possíveis de serem observadas no corpo humano em posições padronizadas como corpo em pé, sentado e deitado. Nesta situação, esta norma aborda os principais fatores que combinados podem determinar o nível de exposição às vibrações aceitáveis pelo homem.

Na Figura 3.1 são mostrados os eixos principais recomendados para medição dos efeitos das vibrações de acordo com o plano de entrada no corpo humano conforme a posição de interesse admitida para análise, segundo a norma em exame.


Essa norma recomenda que as medições sejam realizadas pelo tempo suficiente e necessário para garantir uma precisão estatística razoável, não havendo nenhuma restrição à sua duração. (ISO 2631-1:1997, ISO 2631-2:2003)

Eventualmente, na ocorrência de medições em períodos diversos com claras diferenças características entre si, deverão ser feitas análises separadas para cada período e relatados obrigatoriamente estes fatos, da mesma forma sendo indispensável que outros fatores sejam registrados, tais como a idade, o gênero, o porte e a capacidade física, etc, dos usuários.

Também, o AISC ("American Institute of Steel Construction") considera o ábaco da Figura 3.2 com taxas de aceleração de pico de aceleração relacionadas à aceleração da gravidade onde pretende enquadrar os diversos tipos de utilização possíveis para os pavimentos quanto às vibrações devidas às atividades humanas. (MURRAY e alli, 2003)


As áreas do ábaco da Figura 3.2 localizadas abaixo das linhas tracejadas correspondem aos limites máximos aceitáveis para as acelerações de pico correspondentes às respectivas descrições existentes sobre as mesmas, para as respectivas frequências naturais.

4. Os aspectos da análise

As normas brasileiras ABNT NBR 6118:2007 e ABNT NBR 8800:2008 não entram no mérito das formulações teóricas para desenvolver a análise dinâmica de problemas envolvendo as vibrações estruturais, seja qual for a sua origem, deixando a sugestão para que o engenheiro projetista pesquise o assunto na bibliografia pertinente.

Sabe-se que para se encontrar a resposta no campo da análise dinâmica das estruturas as análises podem ser realizadas tanto no domínio do tempo quanto no domínio da frequência. A análise dinâmica no domínio do tempo é mais indicada nos projetos estruturais, considerando-se que todo o trabalho é realizado somente com os recursos da matemática dos números reais, enquanto a análise no domínio da frequência faz-se uso dos números complexos, sem sentido prático para o profissional de engenharia. (FERREIRA, W.G, 2002)

5. A sequência teórica de cálculo

5.1 Considerações iniciais

A verificação manual das condições dinâmicas de uma laje de piso em particular, inicia-se pelo exame das características físicas da mesma a fim de melhor adequá-la a um modelo estrutural representativo quanto ao aspecto da análise estrutural.

A metodologia a seguir exposta está baseada nas recomendações do AISC ("American Institute of Steel Construction") compiladas a partir de diversos artigos publicados e nas normas nacionais ABNT NBR 6118:2007 e ABNT NBR 8800:2008.

5.1.1 Laje de piso unidirecional

Neste caso, as vibrações ocorrem segundo uma única direção do piso podendo o modelo estrutural ser concebido como um sistema apoiado em uma só direção com vigas secundárias em perfis de aço ou treliçadas. Este caso aplica-se mais frequentemente aos projetos de passarelas destinadas ao tráfego de pedestres. São projetadas com uma laje de piso normalmente apoiada em vigas longitudinais apoiadas em suas extremidades como mostrado na Figura 5-1b.


5.1.2 Laje de piso bi-direcional

Neste caso, as vibrações ocorrem segundo as duas direções do piso, sendo o modelo estrutural concebido como um sistema de piso apoiado nas duas direções, conforme a Figura-5.1a e apoiado segundo uma das alternativas seguintes:

■ Sobre vigas secundárias de almas cheias

■ Sobre vigas secundárias treliçadas

■ Sobre vigas principais de almas cheias

■ Sobre vigas principais de almas vazadas

■ Sobre paredes rígidas na direção principal

Esta solução é regularmente encontrada em projetos de pisos de edificações com múltiplos andares destinadas a atividades residenciais e/ou comerciais sujeitas a atividades devidas ao movimento das pessoas, tais como caminhar, pular e dançar. Dependendo da finalidade de seu uso, são projetados com uma laje normalmente apoiada em vigas secundárias transversais e estas por sua vez apoiadas em suas extremidades em vigas principais ou em paredes rígidas longitudinais. A Figura 5.1 mostra dois modelos básicos para análise.

5.2 Modelo estrutural

A laje de piso examinada neste artigo está especificada em planta como mostra a Figura 5.2, onde é possível identificar as diversas peças que formam o modelo. Nela estão indicados os eixos cartesianos segundo as direções das vigas de apoio secundárias e principais e o espaçamento entre as vigas secundárias.


As dimensões planas a considerar neste modelo estrutural da laje de piso são as seguintes:

Direção x - Dimensão principal LP [m]

Espaçamento entre vigas S [m]

Direção y - Dimensão secundária LS [m]

5.3 Especificações e cálculo preliminares

5.3.1 Altura efetiva da laje de piso

Laje maciça

Espessura da laje de [m]

Laje nervurada

Espessura da mesa dm [m]

Altura da nervura dn [m]

Altura efetiva dl = dm + dn[m]

Espessura média de = dm + [m]

Centro de gravidade da laje yCG [mm]

5.3.2 Perfis de aço

Direção principal (x)

Área da seção transversal Ax [mm2]

Inércia em relação o eixo x-x Ix [mm4]

Altura nominal do perfil dx[mm]

Direção secundária (y)

Área da seção transversal Ay [mm2]

Inércia em relação o eixo x-x Iy [mm4]

Altura nominal do perfil ou treliça dy [mm]

5.3.3 Módulos de elasticidade dos materiais

Módulo de elasticidade do concreto Ec [kN/m2]

Módulo de elasticidade do aço Ea [kN/m2]

5.3.4 Razão modular dinâmica para obtenção da seção secundária

A razão modular é uma relação estabelecida entre os módulos de elasticidade do concreto em relação ao módulo de elasticidade do aço para fins de homogeneização dos materiais obtenção da seção composta equivalente transformada em um só material, utilizada nos diversos cálculos. Neste estudo as seções são homogeneizadas em relação ao aço e a razão modular é dada por:

Onde 1,35 Ec refere-se ao módulo de elasticidade dinâmico do concreto. (MURRAY e alli, 2003)

5.3.5 Cargas de serviço por unidade de área do piso

As cargas normalmente atuantes sobre pisos podem ser classificadas como abaixo. Na eventualidade da ocorrência de outras cargas, elas também devem ser consideradas.

Cargas permanentes

Peso próprio da laje de piso g1 [kN/m2]

Peso próprio da forma incorporada g2 [kN/m2]

Peso do acabamento sob a laje de piso g3 [kN/m2]

Peso do acabamento sobre a laje de piso g4 [kN/m2]

Peso de paredes sobre a laje de piso g5 [kN/m2]

Peso do perfil secundário por metro linear g6 [kN/m]

Peso do perfil principal por metro linear g7 [kN/m]

Peso de pessoas sobre a área do piso g8 [kN/m2]

Cargas variáveis

Peso de pessoas sobre a área do piso q1 [kN/m2]

Peso de móveis sobre a área do piso q2 [kN/m2]

Peso de divisórias sobre a área do piso q3 [kN/m2]

5.4 Análise do piso segundo a direção secundária

Segundo este critério de análise o desenvolvimento dos cálculos ocorrerá primeiro privilegiando a verificação segundo a direção secundária do piso, em seguida dedicando-se à direção principal, para finalmente ser consolidado em uma etapa chamada de cálculos consolidados.

5.4.1 Largura colaborante da seção secundária

5.4.2 Momento de inércia transformado da seção secundária por unidade de largura da laje de piso

Nesta expressão o termo dequando a laje é maciça, iguala-se à altura efetiva da laje dl e quando ela é nervurada, iguala-se à espessura média da mesma conforme definido no item 5.4.1.

5.4.3 Modo de vibração do painel na direção das vigas secundárias

Objetivando à verificação manual em uma laje de piso quanto à solicitação de cargas dinâmicas devida à ação de pessoas movimentando-se sobre a mesma, como caracterizado no item 5.3, nas situações devidas ao caminhar, somente os modos mais baixos são de interesse. Semelhantemente em outras situações tais como as devidas às cargas dinâmicas de mesma origem, mas com outras características, como as devidas às atividades aeróbicas, como saltos, dança e a prática de exercícios físicos também é suficiente se verificar somente as ocorrências correspondentes ao primeiro, segundo e terceiro modos de vibração. (MURRAY e alli, 2003)

5.4.4 Posição da linha neutra na direção secundária

Neste roteiro de cálculo manual a posição da linha neutra da seção secundária obtida está referenciada à face inferior da mesa quando a laje de piso for nervurada e à face inferior da laje caso ela seja maciça. Em ambos os casos a laje encontra-se apoiada sobre os perfis de aço secundários. Para o caso em que o piso é uma laje nervurada ou mista em aço e concreto, a expressão a ser utilizada é a seguinte:

Para o caso em que a laje de piso é maciça a expressão a ser utilizada é a seguinte:

A expressão 5.5 é um caso particular da expressão anterior 5.4, quando a nervura se anula. Observe-se que o valor calculado é positivo quando a posição da linha neutra está acima da referencia adotada, neste caso, a face inferior da mesa da laje, se nervurada ou mista em aço e concreto. A face inferior também é usada quando a laje for maciça. Caso contrário será negativo devendo o sinal ser considerado algebricamente nos cálculos.

5.4.5 Momento de inércia transformado Is da seção secundária

Esse momento de inércia transformado da seção secundária do piso, ou momento de inércia composto, é calculado pela expressão 5.6, onde todos os termos já foram definidos anteriormente. Refere-se ao momento de inércia de uma seção composta por um perfil e a parte colaborante da laje de piso transformada em um único material, aqui adotado o aço.

Nesta fase do roteiro de cálculo é necessário considerar o tipo dos perfis que estão especificados para a direção secundária do piso. Dois casos podem ocorrer:

■ Caso 1 - Vigas secundárias treliçadas de aço

■ Caso 2 - Vigas secundárias em perfis de alma cheia

No caso 1 em que estes perfis sejam treliças simplesmente apoiadas sobre os banzos superiores das vigas de bordo na direção principal, considerações adicionais devem ser admitidas a fim de se determinar o momento de inércia transformado efetivo na direção secundária. Neste caso, o momento de inércia efetiva é dado pela expressão seguinte:

Nesta expressão o termo γ é calculado como segue:

Para a determinação do termo CTfaz-se necessário avaliar a relação LS em que é o vão na direção secundária e d é a altura das treliças de apoio da laje de piso na mesma direção, em função das seções dos materiais constituintes dos banzos das treliças.

Hipótese 1:

Nas treliças formadas por banzos constituídos com cantoneiras simples ou duplas, o termo CT é calculado pela expressão;

Hipótese 2:

As treliças metálicas sendo formadas por banzos constituídos com barras de aço redondas simples, o termo CT é calculado pela expressão;

Se esses perfis de aço são alma cheia, soldados ou parafusados diretamente às almas das vigas principais do piso, este momento de inércia transformado é considerado como sendo o momento de inércia transformado efetivo não havendo necessidade de cálculos adicionais como na expressão 5.7. Neste caso, termo CT = 1 .

5.4.6 Cargas atuantes sobre as seções compostas secundárias

Com base na ABNT NBR 6118:2007, a combinação de cargas atuantes a considerar nos cálculos é obtida com a aplicação direta da expressão 5.11 onde é admitido que tais cargas revestem-se do caráter de atuação frequente. Cargas com esta característica são aquelas que se comportam conforme definição normativa constante da seção 2.2 anterior. A ação variável principal Fq1 é tomada com seu valor frequente ψ1Fqk,1 e todas as demais ações variáveis são tomadas com seus valores quase-permanentes ψ2Fqk. Nestas condições a combinação de cargas para verificação do estado limite quanto às vibrações excessivas recomendadas pela ABNT NBR 6118:2007 e ABNT NBR 8800:2008 é a que segue:

5.4.7 Flecha devida à carga estática no meio do vão secundário

A deformação devida à carga estática na direção secundária correspondente a seção homogeneizada na direção do eixo cartesiano,y , na Figura 5.2, é calculada para a condição em que os apoios são rótulas livres da ação de momentos fletores, dada pela expressão seguinte:

5.4.8 Frequência natural na direção secundária

É conveniente que a frequência natural na direção secundária seja calculada e explicitada visto que poderá auxiliar na eventualidade em que seja necessário se fazer alguma alteração pontual nas peças da estrutura a fim de alcançar o resultado final favorável quanto ao aspecto da verificação das vibrações. É recomendado o cálculo ainda porque a verificação quanto às vibrações nos moldes estruturados neste estudo é linear com o pressuposto de superposição das ações solicitantes.

Esta verificação intermediária permite que o sistema estrutural proposto seja verificado já neste instante quanto ao disposto nos itens 23.1 da ABNT NBR 6118:2007, L.1.2 e L.3.3 da ABNT NBR 8800:2008. A ABNT NBR 6118:2007 determina que fnat > 1,2 fcrit , onde a frequência crítica ou de excitação é obtida na Tabela 5.1, devendo-se considerar ainda que a ABNT NBR 8800:2008 recomenda que esta frequência natural seja sempre superior a 3 Hz. É conveniente que estes limites normativos sejam atendidos simultaneamente.

Assim, a frequência natural na direção secundária é calculada por:

Na eventualidade em que esta frequência natural não atenda à recomendação normativa nesta fase, o sistema estrutural modelado pode ser revisto, seja na seção das vigas, seja na seção da laje de piso, ou em ambas, conforme o interesse e possibilidade permitida pelas especificações de projeto, adequando-o.

5.4.9 Momento de inércia transformada da seção secundária por viga

Este é dado por:

Onde, S , refere-se às distâncias entre as vigas secundárias do piso, como definido na Figura 5.2.

5.4.10 Carga atuante na seção secundária

O cálculo da carga solicitante na direção secundária (direção y) do modelo estrutural da Figura 5.2 é feito pela expressão:

Nesta expressão, a constante k assume valores diferentes conforme a condição de contorno da laje de piso, especificando-se k = 1,0 quando a laje é simplesmente apoiada na direção secundária (caso de vigas secundárias treliçadas apoiadas sobre a mesa superior) e k = 1,5 quando se trata de laje contínua, na direção examinada (caso de perfis de aço soldados ou parafusados nas almas das vigas principais do piso).

Na expressão 5.15, o termo BS correspondente à largura efetiva de cálculo do piso na direção secundária e é dado por:

O valor de BS adotado será o menor dos valores obtidos nas expressões 5.16. Na primeira expressão apenas o termo CS ainda é desconhecido sendo arbitrado em função da posição do piso no pavimento, como segue:

C S = 1, quando tratar-se de um piso na borda do pavimento.

CS = 2, para todos os demais casos.

5.5 Análise do piso na direção principal

Nesta seção serão exibidos os cálculos relativos à verificação dinâmica do piso segundo a sua direção principal.

5.5.1 Largura colabortante da seção principal

A determinação da largura colaborante da laje Lcolna direção das vigas principais é determinada como segue:

5.5.2 Posição da linha neutra da seção principal

A posição da linha neutra da seção mista formada pela viga e laje apoiada é dada pela expressão seguinte:

O valor calculado é positivo quando a posição da linha neutra está abaixo da referencia adotada, nesse caso, a face inferior da mesa da laje nervurada e mista aço e concreto e a face inferior da laje maciça. Caso contrário será negativo.

5.5.3 Momento de inércia transformado ITP da seção principal

A determinação do momento de inércia transformado da seção na direção principal do sistema estrutural, então, é efetuada com a seguinte expressão:

Quando as vigas secundárias são treliçadas e simplesmente apoiadas sobre as vigas principais a rigidez reduzida nas vigas principais deve ser considerada devido à flexibilidade que ocorre nestes apoios. Assim o momento de inércia transformada é calculado com a seguinte expressão:

5.5.4 Cargas atuantes sobre as seções compostas principais

As cargas atuantes sobre a laje e vigas secundárias são transferidas para as vigas principais através da expressão que segue:

5.5.5 Flecha devida à carga estática no meio do vão principal

A flecha devida à carga estática na direção principal, correspondente à seção homogeneizada na direção do eixo cartesiano, x , na Figura 5.2, é calculada para a condição em que os apoios são rótulas e admitidos como livres da ação de momentos fletores. Esta flecha é dada pela seguinte expressão:

Note-se que a carga utilizada Fd,P na expressão 5.22 para obtenção da flecha no centro das vigas principais é a carga nominal, isto é, não está majorada por coeficientes de ponderação, conforme recomendado nas normas nacionais. Importante também é observar que o termo ITP.Redcorrespondente ao momento de inércia reduzida somente ocorrerá quando as vigas secundárias estiverem simplesmente apoiadas nas vigas principais como ocorre com treliças. Não ocorrendo este tipo de vínculo, este termo é substituído pelo momento de inércia transformado ITP calculado pela expressão 5.19.

5.5.6 Frequência natural na direção principal

Como no cálculo da frequência natural na direção secundária, neste instante também é conveniente que a frequência natural na direção principal do sistema em análise seja calculada e explicitada, mesmo não sendo de interesse para a verificação final do piso quanto ao aspecto das vibrações. Além disso, esta explicitação, nesta fase da análise, é recomendada porque a verificação quanto às vibrações nos moldes estruturados neste estudo é linear como afirmado anteriormente.

Essa verificação intermediária permite que seja constatada já nesta fase da análise se o sistema estrutural na direção principal atende ao item 23 da ABNT NBR 6118:2003, em que a relação fnat> 1,2 fcrit deve ser observada, conforme a finalidade de utilização especificada na Tabela 5.1, anteriormente apresentada.

Se eventualmente esta frequência natural não atender ao disposto nas normas, o sistema estrutural modelado pode ser revisto alterando-se a seção das vigas principais ou a seção da laje de piso, ou em ambas, conforme o interesse e possibilidade de projeto adequando-o à recomendação normativa.

Momento de inércia transformado por unidade de comprimento na direção principal

5.5.7 O momento de inércia transformado da laje na direção principal

DP é calculado como segue:

5.5.8 Largura de cálculo do piso na direção principal

A largura de cálculo da laje de piso na direção principal a ser adotada BP é calculada como segue:

Nessa expressão, o termo CPé função das condições de vinculação das vigas secundárias nas vigas principais assumindo o valor 1,60 quando as vigas secundárias se apoiam sobre as mesas das vigas principais como, por exemplo, quando ocorre a especificação de treliças na direção secundária. Quando as vigas secundárias são ligadas diretamente às almas das vigas principais como, por exemplo, quando ocorre a especificação de vigas de aço de alma cheia, o termo CP assume o valor 1,80.

5.5.9 Carga total por unidade de comprimento da seção principal

A parcela da carga total por unidade de comprimento WPna direção principal é dada pela expressão:

Todos os termos da expressão 5.26 já foram definidos anteriormente e são conhecidos a partir das especificações nos itens 5.3 e 5.5.4, excetoBP, correspondente à largura de cálculo do piso, a ser considerado conforme as seguintes condições:

5.6 Análise combinada do piso nas duas direções

Com a análise desenvolvida completamente em ambas as direções do sistema de piso proposto conforme a Figura 5.2, torna-se possível realizar os cálculos finais admitindo-se a superposição dos efeitos e procedendo conforme as rotinas mostradas adiante. As ações e efeitos agora serão definidos como combinados e se referem ao sistema como um conjunto estrutural apoiado nas duas direções.

5.6.1 Frequência natural combinada

A frequência natural combinada para o sistema de piso proposto é calculada pela expressão:

5.6.2 Cálculo da carga atuante combinada sobre o sistema

A carga total atuante combinada para o sistema proposto é calculada pela expressão:

5.6.3 Resposta devida à ação do caminhar das pessoas

Com a sequência de cálculos desenvolvidos até aqui, fica-se apto a obter a resposta dinâmica do sistema estrutural do piso devida ao caminhar das pessoas. Para tanto, essa resposta será obtida em termos da aceleração de pico em relação à aceleração da gravidade com a aplicação da expressão 5.29, válida apenas para ações dinâmicas devidas ao caminhar das pessoas. (MURRAY e alli, 2003) Na expressão 5.30 a carga P0 e o fator de amortecimento β, de acordo com este critério de cálculo da resposta dinâmica devida ao caminhar das pessoas, são obtidos na Tabela 5.2, conforme o tipo de utilização do piso em análise.

A resposta dinâmica do piso devida ao caminhar das pessoas é obtida pela expressão 5.30 a seguir:

Este resultado assim calculado deve ser comparado com os valores recomendados na última coluna da Tabela 5.2 para conclusão da análise. Os valores percentuais obtidos para a relação na expressão 5.30 também podem ser comparados com os valores limites para estes percentuais de acelerações de pico aceitáveis e definidos para cada caso de utilização dos pisos em função da atividade humana considerada ajustada em relação à curva base da ISO 2631-1:1997 como mostrado na Figura 3.2.

5.6.4 Resposta devida às ações aeróbicas das pessoas

A análise quanto às ações aeróbicas aproveita a sequência de cálculos anteriormente mostrada até onde é calculada a frequência natural combinada na sub-seção 5.6.1. Com esta frequência natural calculada é possível realizar uma primeira aproximação quanto à aceitabilidade do piso para atividades aeróbicas utilizando-se a Tabela 5.3 de acordo com a atividade aeróbica listada na primeira coluna.

A frequência natural calculada de acordo com a seção 5.6.1 deve ser comparada com a frequência natural mínima requerida na Tabela 5.3 interpolando-se, quando necessário, para a sua obtenção de acordo com as características do piso em análise em relação aos especificados nesta Tabela 5.3. Essa frequência natural calculada sendo inferior à frequência natural mínima requerida tabelada indica que o piso não pode ser aceito passando-se então para uma segunda análise, agora, utilizando-se a expressão seguinte:

Nesta expressão, os termos são definidos como segue:

fnat - Frequência natural do sistema de piso em análise

(fnat )req- Frequência natural mínima requerida em cada frequência forçada

f - Frequência de excitação conforme Tabela 5.4, f = i. fPasso

fPasso - Frequência de passo da atividade

i - Harmônico em análise conforme Tabela 5.4

k - Constante função do tipo de utilização do piso

Salão de dança = 1,30

Concerto ao vivo= 1,70

Eventos esportivos = 1,70

Atividades aeróbicas = 2,00

α - Coeficiente dinâmico conforme Tabela 5.4

a pico/g - Percentual da aceleração de pico / aceleração da gravidade

wp- Peso por unidade de área dos participantes distribuídos no piso

wt - Peso total por unidade de área dos participantes e do piso

Nota importante:

As parcelas referentes aos pesos wpe wt, devem ser consideradas em toda a área do sistema estrutural do piso em exame. A expressão 5.31 deve ser usada para todos harmônicos listados na Tabela 5.4, substituindo-se os termos da mesma de acordo com a atividade aeróbica sob a qual o piso está submetido.

De acordo com o critério exposto, a razão percentual da aceleração de pico em relação à aceleração da gravidade pode ser calculada pelas expressões apresentadas a seguir, conforme o caso. Da mesma forma como exposto no item 5.6.4 os níveis aceitáveis máximos para a razão entre aceleração de pico em relação à gravidade encontram-se exibidos no ábaco da Figura 3.2.

Caso1:

Na ressonância, situação em que ocorre a soma das energias da vibração natural do sistema com a da vibração forçada no momento em que elas são iguais, fnat.Comb = f , a expressão 5.31 pode ser rearranjada para o seguinte formato:

Nessa expressão β representa a taxa de amortecimento do sistema estrutural. O resultado da expressão 5.32 deve ser inferior à razão percentual da aceleração de pico em relação à aceleração da gravidade especificada na primeira coluna da Tabela 5.3, logo abaixo da destinação de uso do piso.

Caso 2:

Fora da ressonância, situação em que f Nat.Comb>1,2 f , e a expressão 5.30 se transforma em:

Finalizando, quando a frequência harmônica de excitação f = if passo, onde i representa o harmônico de interesse, é igual ou se mostra muito próxima da frequência natural fnat do sistema estrutural de piso, a sua aceleração percentual da aceleração de pico em relação à gravidade deve ser calculada pela expressão 5.31. Nos casos em que os harmônicos mais baixos apresentam-se com níveis de frequências de excitação afastadas da frequência natural, a relação da aceleração de pico em relação à aceleração da gravidade deve ser calculada pela expressão 5.33 para o harmônico de interesse.

6. Aplicação numérica

Exemplificando-se estas informações numericamente, supõe-se uma laje de piso inicialmente destinada a escritórios para a qual se deseja verificar a sua aceitabilidade em um primeiro momento quando submetida ao caminhar dos usuários e em um segundo momento, devido à mudança de uso, quando submetidas a cargas aeróbicas devido ao acréscimo de uma pista de dança. Essa laje de piso, por suas características de uso iniciais é enquadrada na primeira linha da Tabela 5.2 para fins de obtenção das primeiras informações necessárias aos cálculos e na Tabela 5.3 na análise final.

A Tabela 5.5 apresenta os dados de entrada do exemplo numérico para a verificação do piso conforme representado na Figura 5.2. Então, fazendo-se as substituições desses valores iniciais adequadamente nas respectivas expressões mostradas anteriormente conforme o roteiro mostrado chega-se ao valor do percentual

da aceleração de pico em relação à gravidade

de cálculo.

Obtidos estes valores, faz-se a comparação dos valores calculados com os valores limites recomendados na Tabela 5.2. Se calculado for inferior ao valor equivalente tabelado conclui-se que para os dados iniciais propostos a laje de piso exemplificada satisfaz às condições mínimas capazes de evitar os efeitos danosos das vibrações. Caso contrário não satisfaz a esta condição. No caso presente, o piso como especificado inicialmente, atenderia à verificação quanto ao caminhar e não atenderia na hipótese em que lhe fosse acrescida uma pista de dança.

Na verificação dinâmica do piso ao caminhar, a taxa da aceleração de pico em relação à aceleração da gravidade alcançaria a 0,31%, valor inferior ao limite máximo de 0,50% (Tabela 5.2) aceitável. Na verificação quanto à prática de dança na pista adicionada ao mesmo a taxa da aceleração de pico em relação à aceleração da gravidade alcançaria a 4,13% inferior ao limite de 5,00% (Tabela 5.3) aceitável, mas a frequência natural mínima aceitável ficaria abaixo do limite mínimo requerido de 10,84 Hz calculado pela expressão 5.31, alcançando apenas o valor de 10,46 Hz.

Portanto o piso, na hipótese do acréscimo de uma pista de dança necessitaria de intervenção técnica para adequação da frequência natural calculada pela expressão 5.28 à frequência natural mínima requerida aceitável obtida com expressão 5.31.

7. Conclusão

Pela norma ABNT NBR 6118:2007, a análise dinâmica para a peça estrutural examinada neste artigo, estaria atendida tão somente com o cálculo de suas frequências naturais e consequente comparação destes resultados com as respectivas frequências críticas mostradas na Tabela 2.2 satisfazendo a desigualdade fnat > 1,2 fcrit e aos deslocamentos máximos aceitáveis recomendados na Tabela 2.1 devendo as duas condições serem atendidas simultaneamente.

A norma ABNT NBR 8800:2008 enumera alguns critérios mínimos a considerar sem, entretanto, detalhá-los numericamente sugerindo textos de origem internacional para fins de consulta e enquadramento da análise dinâmica em exame.

Este artigo expõe o desenvolvimento dos cálculos relativos à análise dinâmica de um piso possibilitando a análise em duas situações e obtendo-se as respostas dinâmicas quando submetido às ações devidas às atividades humanas devidas ao caminhar e a atividades aeróbicas tais como dançar. Para as demais atividades aeróbicas listadas nas Tabelas 5.3 e 5.4 o procedimento é o mesmo.

É sistematizado o desenvolvimento teórico para aplicação imediata tornando possível a aplicação manual ou com auxílio de sistemas computacionais mais simples, permitindo assim atender às necessidades mais imediatas e expeditas de forma segura dos profissionais envolvidos neste tipo de análise.

Finaliza-se sugerindo valores numéricos que podem ser substituídos na sequência de fórmulas e considerações teóricas apresentadas tornando possível a análise final quanto aos diversos aspectos de interesse envolvidos na análise dinâmica de pisos tais como o tipo de ocupação, a carga humana de excitação, a razão de amortecimento e o percentual de aceleração limite aceitável conforme a literatura internacional, além de atender às recomendações normativas brasileiras.

Comparam-se os valores calculados com os valores tabelados na análise final quanto à aceitação do piso em relação às vibrações ocasionadas pelo caminhar. Verifica-se se os valores calculados situam-se abaixo dos limites especificados na Tabela 5.2 e 5.3 conforme a respectiva utilização especificada para o piso.

Observa-se com esta sequência de cálculos relativamente simples que é possível conduzir rápida e eficientemente a análise de pisos quanto às vibrações devido às atividades humanas a que estejam sujeitos em função de suas diversas e possíveis utilizações, tornando possível a tomada de decisões técnicas rápidas e capazes de orientar a necessidade de análises mais elaboradas, orientando eventuais intervenções físicas preliminares e imediatas nas peças estruturais examinadas para fins de mitigação quanto às vibrações induzidas pelos usuários.

8. Agradecimentos

Os autores agradecem ao CNPq, CAPES, e FAPES pelo apoio recebido para a realização deste estudo.

9. Referências

Received: 11 Nov 2013

Accepted: 19 Feb 2014

Available Online: 03 Apr 2014

  • [01] ASSOCIAÇÃO BRASILEIRA DE NORNAS TÉCNICAS - ABNT. Projeto de Estruturas de Concreto. Procedimento. ABNT NBR 6118. Rio de Janeiro: ABNT, 2007
  • [02] ASSOCIAÇÃO BRASILEIRA DE NORNAS TÉCNICAS - ABNT. Projeto e Execução de Estruturas de Aço de Edifícios. Procedimento. ABNT NBR 8800. Rio de Janeiro: ABNT, 2008
  • [03] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION - ISO - Mechanical Vibration and Shock - Evaluation of Human Exposure to Wholebody Vibration - Part 1: Vibration in Buildings (1 Hz to 80 Hz) - ISO 2631:1 - 2ª Ed - 05/01/1997
  • [04] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION - ISO - Mechanical Vibration and Shock - Evaluation of Human Exposure to Wholebody Vibration - Part 2: Vibration in Buildings (1 Hz to 80 Hz) - ISO 2631:2 - 2ª Ed - 04/01/2003
  • [05] MURRAY, T.M; ALLEN, D.A; UNGAR, E.E. Floor Vibrations Due to Human Activity - Steel Design Guide Series 11 - 2ş Ed - Chicago: AISC - American Institute of Steel Construction Inc., 2003.
  • [06] FERREIRA, W.G; Análise Dinâmica no Domínio da Frequência de Sistemas Estruturais, 1ed. Vitória, ES, Editora Enfoque Comunicação e Marketing Ltda, 2002.

Datas de Publicação

  • Publicação nesta coleção
    22 Abr 2014
  • Data do Fascículo
    Abr 2014

Histórico

  • Recebido
    11 Nov 2013
  • Aceito
    19 Fev 2014
IBRACON - Instituto Brasileiro do Concreto Instituto Brasileiro do Concreto (IBRACON), Av. Queiroz Filho, nº 1700 sala 407/408 Torre D, Villa Lobos Office Park, CEP 05319-000, São Paulo, SP - Brasil, Tel. (55 11) 3735-0202, Fax: (55 11) 3733-2190 - São Paulo - SP - Brazil
E-mail: arlene@ibracon.org.br