Acessibilidade / Reportar erro

A concise synthetic method for 1,3,5-triazinane-2,4-dithiones

Abstracts

1,3,5-Triazinane-2,4-dithiones were efficiently synthesized via condensation of 2 equiv. of 1-arylthioureas with 1 equiv. of aliphatic carboxylic acids using ferric chloride hexahydrate as a catalyst. This protocol has the advantages of high yield, mild condition and simple procedure.

1,3,5-triazinane-2,4-dithione; 1,3,5-triazinane; thiourea; carboxylic acid; synthesis


1,3,5-Triazinane-2,4-ditionas foram sintetizadas eficientemente via condensação de 2 equiv. de 1-aril-tiouréa com 1 equiv. de ácidos carboxílicos alifáticos usando cloreto férrico hexahidratado como catalisador. Este protocolo tem as vantagens de alto rendimento, condições brandas e procedimento simples.


ARTICLE

A concise synthetic method for 1,3,5-triazinane-2,4-dithiones

Zheng Li* * e-mail: lizheng@nwnu.edu.cn ; Hongfang Cai; Jingya Yang; Pengxian Niu; Chenhui Liu

College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China

ABSTRACT

1,3,5-Triazinane-2,4-dithiones were efficiently synthesized via condensation of 2 equiv. of 1-arylthioureas with 1 equiv. of aliphatic carboxylic acids using ferric chloride hexahydrate as a catalyst. This protocol has the advantages of high yield, mild condition and simple procedure.

Keywords: 1,3,5-triazinane-2,4-dithione, 1,3,5-triazinane, thiourea, carboxylic acid, synthesis

RESUMO

1,3,5-Triazinane-2,4-ditionas foram sintetizadas eficientemente via condensação de 2 equiv. de 1-aril-tiouréa com 1 equiv. de ácidos carboxílicos alifáticos usando cloreto férrico hexahidratado como catalisador. Este protocolo tem as vantagens de alto rendimento, condições brandas e procedimento simples.

Introduction

Heterocyclic compounds have long been known to exhibit remarkable biological and pharmacological properties.1 Among the heterocycles, triazine derivatives have attracted much attention because they can connect with other molecules by hydrogen or coordination bond to form network supramolecular materials,2 and they can serve as luminescent or n-type electron-carrying materials after connected with some substituents like diphenylacetylene, naphthalene and anthracene.3 Triazine derivatives constitute well-known compounds that have been used as fungicidal,4 antiplasmodial,5 anti-HIV 6 and herbicidal agents,7 and chiral discriminators,8 hydrogen sulfide scavengers9 and low-toxicity drug deliverers.10 They were also applied in organic synthesis,11 enantiodifferentiating coupling reagents,12 catalysis,13 molecular tectonics,14 and polymeric materials.15 Meanwhile, heterocycles containing a thiourea structural unit have a special place among pharmaceutically important natural and synthetic materials, showing powerful antiproliferative action,16 antibacterial properties17 and anticancer activity.18 For these reasons, 1,3,5-triazinane derivatives incorporating thiourea unit may be important in many fields.

The general synthetic methods for 1,3,5-triazinane derivatives involve the reactions of N, N'-bis(aryl-methylidene)arylmethane diimines with thioureas,19 the multi-component reactions of phosphonates, nitriles, aldehydes and isocyanates,20 the condensation of trifluoromethanesulfonamide with formaldehyde,21 and the reactions of thiosemicarbazones with potassium thiocyanate and benzoyl chloride.22 However, some methods use expensive reagents, toxic organic solvents, rigorous conditions, tedious workup procedure and long reaction time. Therefore, it is necessary to develop simple and efficient synthetic methods to 1,3,5-triazinane derivatives.

In this article, we report the synthesis of 1,3,5-triazinane2,4-dithiones by reactions of 2 equiv. of 1-arylthioureas with 1 equiv. of aliphatic carboxylic acids using ferric chloride hexahydrate as a catalyst.

Results and Discussion

Initially, the synthesis of 1,3,5-triazinane-2,4-dithione was attempted by reaction of 1-phenylthiourea with acetic acid at room temperature under catalyst-free condition, however, no product was observed. Subsequently, the mixture of 1-phenylthiourea and acetic acid was heated at 80ºC for several hours, a new compound was isolated in low yield, which was identified to be a novel heterocyclic compound, 6-hydroxy-6-methyl-1,5-diphenyl1,3,5-triazinane-2,4-dithione. In our further research, it was found that some Brønsted acids, such as p-toluenesulfonic acid (PTSA) and trichloroacetic acid (TCA), and Lewis acids, such as AlCl3, CuCl2, NiCl2, FeCl3 and FeCl3·6H2O, could efficiently catalyze the reaction (Table 1). Among them, FeCl3·6H2O could give the best yield if the reaction was carried out at 80ºC using 10 mol% amount of catalyst (Table 1, entry 8). In addition, in this reaction, acetic acid was acted as a reactant and solvent.

To explore the generality and scope of the synthetic reactions, and synthesis of a series of 6-hydroxy-6-alkyl1,5-diaryl-1,3,5-triazinane-2,4-dithiones (Scheme 1), different 1-arylthioureas and aliphatic carboxylic acids as substrates were examined under optimal conditions (Table 2). It was found that various 1-arylthioureas could efficiently react with aliphatic carboxylic acids at 80ºC in the presence of FeCl3·6H2O to give the corresponding products in high yield. In comparison with 1-phenylthiourea, it was found that 1-arylthioureas including electron-donating groups, such as methyl and methoxyl, on the aromatic rings gave the corresponding products in higher yield and in faster rate (Table 2, entries 7-18). 1-Arylthioureas bearing electron-withdrawing substituents, such as chloro, on aromatic rings gave the corresponding product in slightly lower yield under similar conditions (Table 1, entry 19). Aliphatic carboxylic acids from C2-C7 were examined for the reactions, and afforded the corresponding products in high yield. In addition, aromatic carboxylic acids, such as various (un)substituted benzoic acids, were also attempted for the similar reactions, but no desired products were observed.


The resulting compounds 6-hydroxy-6-alkyl-1,5-diaryl1,3,5-triazinane-2,4-dithiones are highly soluble in polar organic solvents including CHC13, CH2C12, DMSO, DMF and EtOH, but insoluble in toluene, benzene, ether and n-hexane. The structures of all compounds were identified by infrared (IR), 1H and 13C nuclear magnetic resonance (NMR) spectroscopies and elemental analysis. The 1H NMR spectra of 6-hydroxy-6-alkyl-1,5-diaryl1,3,5-triazinane-2,4-dithiones show the singlets of hydroxyls at 5.89-6.12 ppm and the multiplets of aromatic rings at 6.84-8.12 ppm. The IR spectra show the characteristic adsorption of hydroxyls at 3359-3450 cm-1.

A possible mechanism for the synthesis of 1,3,5-triazinane-2,4-dithione is shown in Scheme 2.


Presumably, condensation of 2 equiv. of 1-arylthiourea 1 releasing a mole of ammonia first generates an intermediate A. One of amino groups of A subsequent reacts with a mole of complex B, which is formed from aliphatic carboxylic acid 2 and ferric chloride in the solution, to give intermediate C by loss of water. Subsequently the carbonyl group of C undergoes the nuleophilic addition of its amino group by releasing ferric chloride to form a six-membered heterocyclic compound, 1,3,5-triazinane-2,4-dithione 3.

Conclusion

An efficient and concise method has been developed for the synthesis of 1,3,5-triazinane-2,4-dithiones via condensation of 2 equiv. of 1-arylthioureas with 1 equiv. of aliphatic carboxylic acids using ferric chloride hexahydrate as a catalyst. This protocol has the advantages of high yield, mild condition and simple procedure.

Experimental

IR spectra were recorded using KBr pellets on anAlpha Centauri FTIR spectrophotometer and 1H and 13C NMR spectra on a Mercury-400BB instrument using CDCl3 or DMSO-d6 as solvents and Me4Si as internal standard. Melting points (mp) were observed in an electrothermal melting point apparatus. Flash column chromatography was carried out using 200-300 mesh silica gel at increased pressure. Aromatic thioureas were synthesized according to the literature methods.23

General procedure for the preparation of 6-hydroxy 6-alkyl-1,5-diaryl-1,3,5-triazinane-2,4-dithiones

The mixture of 1-arylthioureas (2 mmol), aliphatic carboxylic acids (3 mmol) and ferric chloride hexahydrate (0.2 mmol) was heated at 80ºC for appropriate time according to Table 2. The progress of the reactions was monitored by TLC (thin layer chromatography). After the completion of the reactions, the systems were cooled to room temperature, and the mixture was subjected to silica gel flash column chromatography (ethyl acetate, petroleum ether, 1:6) to obtain pure products.

Supplementary Information

Full set of characterization data (IR, 1H and 13C NMR spectra) are available free of charge at http://jbcs.sbq.org.br as PDF file.

Acknowledgements

The authors thank the National Natural Science Foundation of China (20772096) and Key Laboratory of Polymer Materials of Gansu Province for the financial support of this work.

References

1. Menicagli, R.; Samaritani, S.; Signore, G.; Vaglini, F.; Via, L. D.; J. Med. Chem. 2004,47,4649; Franzen, R. G.; J. Comb. Chem. 2000,2,195; Nefzi, A.; Ostresh, J. M.; Houghten, R. A.; Chem. Rev. 1997,97,449.

2. Cai, Y. Q.; Wu, W.; Wang, H.; Miyake, J.; Qian, D. J.; Surf. Sci. 2011,605,321.

3. Kostas, I. D.; Andreadaki, F. J.; Medlycott, E. A.; Hanan, G. S.; Monflier, E.; Tetrahedron Lett. 2009,50,1851; Lee, C. H.; Yamamoto, T.; Tetrahedron Lett. 2001,42,3993.

4. Ibrahim, M. A.; Abdel-Rahman, R. M.; Abdel-Halim, A. M.; Ibrahim, S. S.; Allimony, H. A.; J. Braz. Chem. Soc. 2009,20,1275.

5. Klenke, B.; Barrett, M. P.; Brun, R.; Gilbert, I. H.; J. Antimicrob. Chemother. 2003,52,290.

6. Patel, R. B.; Chikhalia, K. H.; Pannecouque, C.; Clercq, E.; J. Braz. Chem. Soc. 2007,18,312.

7. Soong, C. L.; Ogawa, J.; Sakuradani, E.; Shimizu, S.; J. Biol. Chem. 2002,227,7051.

8. Sugimoto, H.; Yamane, Y.; Inoue, S.; Tetrahedron: Asymmetry 2000,11,2067.

9. Bakke, J. M.; Buhaug, J. B.; Ind. Eng. Chem. Res. 2004,43,1962.

10. Murray, A. P.; Miller, M. J.; J. Org. Chem. 2003,68,191; Ghosh, M.; Miller, M. J.; J. Org. Chem. 1994,59,1020.

11. Falorni, M.; Porcheddu, A.; Taddei, M.; Tetrahedron Lett. 1999,40,4395; Luca, L. D.; Giacomelli, G.; Taddei, M.; J. Org. Chem. 2001,66,2534; Babak, K.; Hazarkhani, H.; Synthesis 2003,2547; Dang, Q.; Gomez-Galeno, J. E.; J. Org. Chem. 2002,67,8703.

12. Kaminski, Z. J.; Kolesinska, B.; Kaminska, J. E.; Gora, J.; J. Org. Chem. 2001,66,6276.

13. Omotowa, B. A.; Shreeve, J. M.; Organometallics 2004,23,783; Graeme, C.; Cremiers, H. A.; Rotello, V. M.; Tarbitc, B.; Vanderstraetena, P. E.; Tetrahedron 2001,57,2787.

14. Fournier, J. H.; Maris, T.; Wuest, J. D.; J. Org. Chem. 2004,69,1762; Laliberte, D.; Maris, T.; Wuest, J. D.; J. Org. Chem. 2004,69,1776.

15. Brunsveld, L.; Vekemans, J. A. J. M.; Hirschberg, J. H. K. K.; Sijbesma, R. P.; Meijer, E. W.; Proc. Natl. Acad. Sci. U.S.A. 2002,99,4977.

16. Figueiredo, I. M.; Santos, L. V.; Costa, W. F.; Carvalho, J. E.; Silva, C. C.; Sacoman, J. L.; Kohn, L. K.; Sarragiotto, M. H.; J. Braz. Chem. Soc. 2006,17,954.

17. Han, T.; Cho, J. H.; Oh, C. H.; Eur. J. Med. Chem. 2006,41,825.

18. Yan, K.; Lok, C. N.; Bierla, K.; Che, C. M.; Chem. Commun. 2010,46,7691.

19. Kaboudin, B.; Ghasemi, T.; Yokomatsu, T.; Synthesis 2009,3089.

20. Groenendaal, B.; Vugts, D. J.; Schmitz, R. F.; Kanter, F. J. J.; Ruijter, E.; Groen, M. B.; Orru, R. V. A.; J. Org. Chem. 2008,73,719.

21. Meshcheryakov, V. I.; Albanov, A. I.; Shainyan, B. A.; Russ. J. Org. Chem. (Engl. Transl.) 2005,41,1381.

22. Ali, T. E. S.; Abdel-Monem, W. R.; Phosphorus, Sulfur, Silicon Relat. Elem. 2008,183,2161.

23. Thanigaimalai, P.; Hoang, T. A. L.; Lee, K. C.; Bang, S. C.; Sharma, V. K.; Yun, C. Y.; Roh, E.; Hwang, B. Y.; Kim, Y.; Jung, S. H.; Bioorg. Med. Chem. Lett. 2010,20,2991; Ubarhande, S. S.; Thakare, V. G.; Berad, B. N.; J. Indian Chem. Soc. 2010,87,1137.

Submitted: May 13, 2011

Published online: August 11, 2011

Supplementary Information

General procedure for the preparation of 6-hydroxy 6-alkyl-1,5-diaryl-1,3,5-triazinane-2,4-dithiones

The mixture of 1-arylthioureas (2 mmol), aliphatic carboxylic acids (3 mmol) and ferric chloride hexahydrate (0. 2 mmol) was heated at 80ºC for appropriate time according to Table 2. The progress of the reactions was monitored by TLC (thin layer chromatography). After the completion of the reactions, the systems were cooled to room temperature, and the mixture was subjected to silica gel flash column chromatography (ethyl acetate, petroleum ether, 1:6) to obtain pure products. The spectral data and scanned spectra for products are given below.

6-Hydroxy-6-methyl-1,5-diphenyl-1,3,5-triazinane 2,4-dithione (1)

White solid, mp 254-256ºC; IR (KBr) νmax/cm-1 3409, 2925, 2861, 1614, 1582, 1533, 1473, 1442, 1301, 1251, 1157, 759, 697; 1H NMR (CDC13, 400 MHz) δ 7. 06-7. 71 (m, 10H, Ph-H), 6. 10 (s, 1H, OH), 2. 24 (s, 3H, CH3); 13C NMR (DMSO-d6, 100 MHz) δ 181. 6, 177. 4, 147. 8, 139. 3, 134. 2, 130. 0, 129. 9 (2C), 128. 7 (2C), 128. 4 (2C), 122. 7, 120. 0 (2C), 25. 9; Anal. calcd. for C16H15N3OS2: C, 58. 33; H, 4. 59; N, 12. 76; Found: C, 58. 22; H, 4. 57; N, 12. 73.

6-Hydroxy-6-ethyl-1, 5-diphenyl-1, 3, 5-triazinane 2, 4-dithione (2)

White solid, mp 197-198ºC; IR (KBr) νmax/cm-1 3359, 3064, 2986, 2915, 1616, 1579, 1539, 1483, 1443, 1350, 1216, 1060, 750, 690; 1H NMR (CDC13, 400 MHz) δ 7. 05-7. 71 (m, 10H, Ph-H), 6. 11 (s, 1H, OH), 2. 51 (q, 2H, J 7. 6 Hz, CH2), 1. 13 (t, 3H, J 7. 6 Hz, CH3); 13C NMR (CDCl3, 100 MHz) δ 186. 7, 177. 3, 145. 7, 137. 8, 133. 8, 130. 8 (3C), 129. 2 (2C), 128. 2 (2C), 123. 7, 118. 8 (2C), 32. 30, 9. 50; Anal. calcd. for C17H17N3OS2: C, 59. 45; H, 4. 99; N, 12. 23; Found: C, 59. 54; H, 4. 98; N, 12. 19.

6-Hydroxy-6-propyl-1, 5-diphenyl-1, 3, 5-triazinane 2, 4-dithione (3)

White solid, mp 133-135ºC; IR (KBr) νmax/cm-1 3410, 3054, 2960, 2927, 2862, 1601, 1586, 1543, 1475, 1442, 1377, 1349, 1282, 1231, 1210, 1157, 751, 690; 1H NMR (CDC13, 400 MHz) δ 7. 05-7. 71 (m, 10H, Ph-H), 6. 11 (s, 1H, OH), 2. 47 (t, 2H, J 7. 4 Hz, CH2), 1. 60-1. 68 (m, 2H, CH2), 0. 90 (t, 3H, J 7. 4 Hz, CH3); 13C NMR (CDCl3, 100 MHz) δ 185. 9, 177. 2, 145. 7, 137. 7, 133. 8, 130. 7 (3C), 129. 1 (2C), 128. 1 (2C), 123. 7, 118. 8 (2C), 41. 0, 18. 8, 13. 9; Anal. calcd. for C18H19N3OS2: C, 60. 47; H, 5. 36; N, 11. 75; Found C, 60. 50; H, 5. 35; N, 11. 74.

6-Hydroxy-6-butyl-1, 5-diphenyl-1, 3, 5-triazinane 2, 4-dithione (4)

White solid, mp 155-157ºC; IR (KBr) νmax/cm-1 3418, 3059, 2949, 2864, 1617, 1602, 1585, 1541, 1477, 1443, 1349, 1290, 1204, 752, 694; 1H NMR (CDCl3, 400 MHz) δ 7. 05-7. 71 (m, 10H, Ph-H), 6. 11 (s, 1H, OH), 2. 49 (t, 2H, J 7. 4 Hz, CH2), 1. 57-1. 64 (m, 2H, CH2), 1. 26-1. 33 (m, 2H, CH2), 0. 87 (t, 3H, J 7. 4 Hz, CH3); 13C NMR (CDCl3, 100 MHz) δ 186. 1, 177. 2, 145. 7, 137. 7, 133. 8, 130. 7 (3C), 129. 1 (2C), 128. 1 (2C), 123. 7, 118. 8 (2C), 38. 8, 27. 5, 22. 4, 13. 9; Anal. calcd. for C19H21N3OS2: C, 61. 42; H, 5. 70; N, 11. 31; Found C, 61. 54; H, 5. 71; N, 11. 29.

6-Hydroxy-6-pentyl-1, 5-diphenyl-1, 3, 5-triazinane 2, 4-dithione (5)

White solid, mp 124-126ºC; IR (KBr) νmax/cm-1 3448, 2955, 2927, 2864, 1616, 1578, 1539, 1513, 1480, 1441, 1350, 1245, 1201, 752, 692; 1H NMR (CDCl3, 400 MHz) δ 7. 05-7. 70 (m, 10H, Ph-H), 6. 12 (s, 1H, OH), 2. 48 (t, 2H, J 7. 4 Hz, CH2), 1. 60-1. 64 (m, 2H, CH2), 1. 26-1. 27 (m, 4H, CH2), 0. 85 (t, 3H, J 7. 4 Hz, CH3); 13C NMR (CDCl3, 100 MHz) δ 186. 1, 177. 2, 145. 7, 137. 7, 133. 8, 130. 7 (3C), 129. 1 (2C), 128. 1 (2C), 123. 7, 118. 8 (2C), 39. 0, 31. 5, 25. 0, 22. 4, 13. 9; Anal. calcd. for C20H23N3OS2: C, 62. 30; H, 6. 01; N, 10. 90; Found C, 62. 22; H, 5. 99; N, 10. 88.

6-Hydroxy-6-hexyl-1, 5-diphenyl-1, 3, 5-triazinane 2, 4-dithione (6)

White solid, mp 105-106ºC; IR (KBr) νmax/cm-1: 3450, 2945, 2921, 2850, 1614, 1577, 1539, 1481, 1439, 1348, 1299, 1240, 1199, 752, 692; 1H NMR (CDCl3, 400 MHz) δ 7. 05-7. 71 (m, 10H, Ph-H), 6. 11 (s, 1H, OH), 2. 48 (t, 2H, J 7. 4 Hz, CH2), 1. 58-1. 63 (m, 2H, CH2), 1. 22-1. 31 (m, 6H, CH2), 0. 85 (t, 3H, J 7. 4 Hz, CH3); 13C NMR (CDCl3, 100 MHz) δ 186. 1, 177. 2, 145. 7, 137. 7, 133. 8, 130. 7 (2C), 129. 1 (2C), 128. 5 (2C), 128. 1, 123. 7, 118. 8 (2C), 39. 1, 31. 6, 29. 0, 25. 3, 22. 5, 14. 0; Anal. calcd. for C21H25N3OS2: C, 63. 12; H, 6. 31; N, 10. 52; Found C, 63. 01; H, 6. 30; N, 10. 47.

6-Hydroxy -6-methyl -1, 5 -di(2 -methylphenyl) 1, 3, 5-triazinane-2, 4-dithione (7)

White solid, mp 239-241ºC; IR (KBr) νmax/cm-1 3415, 2961, 2925, 2856, 1617, 1587, 1544, 1484, 1455, 1363, 1300, 1256, 752; 1HNMR (CDC13, 400MHz) δ 8. 11(d, 1H, J8. 4Hz, Ph-H), 7. 00-7. 59 (m, 7H, Ph-H), 5. 89 (s, 1H, OH), 2. 24 (s, 3H, CH3), 2. 20 (s, 3H, CH3), 1. 88 (s, 3H, CH3); 13C NMR (CDCl3, 100 MHz) δ 183. 3, 176. 9, 145. 8, 136. 9, 135. 9, 132. 7, 132. 4, 131. 3, 130. 5, 128. 3, 128. 1, 127. 2, 126. 7, 124. 1, 119. 9, 26. 1, 17. 5, 16. 9; Anal. calcd. for C18H19N3OS2: C, 60. 47; H, 5. 36; N, 11. 75; Found C, 60. 53; H, 5. 35; N, 11. 71.

6-Hydroxy -6-ethyl -1, 5 -di(2 -methylphenyl) 1, 3, 5-triazinane-2, 4-dithione (8)

White solid, mp 160-162ºC; IR (KBr) νmax/cm-1 3413, 3061, 2972, 2925, 2860, 1618, 1587, 1549, 1489, 1456, 1371, 1226, 748; 1HNMR(CDC13, 400MHz) δ 8. 10(d, 1H, J8. 0Hz, Ph-H), 6. 97-7. 58(m, 7H, Ph-H), 5. 90(s, 1H, OH), 2. 53(q, 2H, J 7. 4 Hz, CH2), 2. 17 (s, 3H, CH3), 1. 88 (s, 3H, CH3), 1. 13 (t, 3H, J 7. 4 Hz, CH3); 13C NMR (CDCl3, 100 MHz) δ 186. 7, 176. 6, 145. 8, 137. 0, 135. 9, 132. 7, 132. 3, 131. 2, 130. 5, 128. 2, 128. 1, 127. 2, 126. 7, 124. 1, 119. 9, 32. 3, 17. 5, 16. 9, 9. 5; Anal. calcd. for C19H21N3OS2: C, 61. 42; H, 5. 70; N, 11. 31; Found C, 61. 47; H, 5. 69; N, 11. 28.

6-Hydroxy -6-propyl -1, 5 -di(2 -methylphenyl) 1, 3, 5-triazinane-2, 4-dithione (9)

White solid, mp 154-155ºC; IR (KBr) νmax/cm-1 3409, 3009, 2963, 2928, 2841, 1609, 1547, 1511, 1468, 1366, 1300, 1254, 668; 1HNMR (CDC13, 400MHz) δ 8. 10 (d, 1H, J8. 4Hz, Ph-H), 7. 00-7. 56 (m, 7H, Ph-H), 5. 89 (s, 1H, OH), 2. 47 (t, 2H, J 7. 6 Hz, CH2), 2. 20 (s, 3H, CH3), 1. 88 (s, 3H, CH3), 1. 62 1. 68 (m, 2H, CH2), 0. 90 (t, 3H, J 7. 2 Hz, CH3); 13C NMR (CDCl3, 100 MHz) δ 186. 0, 176. 6, 145. 8, 137. 0, 135. 9, 132. 7, 132. 3, 131. 2, 130. 5, 128. 2, 128. 1, 127. 2, 126. 7, 124. 1, 119. 9, 41. 0, 18. 9, 17. 5, 16. 9, 13. 8; Anal. calcd. for C20H23N3OS2: C, 62. 30; H, 6. 01; N, 10. 90; Found C, 62. 15; H, 5. 99; N, 10. 87.

6-Hydroxy -6-butyl -1, 5 -di(2 -methylphenyl) 1, 3, 5-triazinane-2, 4-dithione (10)

White solid, mp 123-124ºC; IR (KBr) νmax/cm-1 3383, 2961, 2924, 2857, 1600, 1535, 1512, 1471, 1408, 1341, 1240, 1201, 1070, 804; 1H NMR (CDC13, 400 MHz) δ 8. 09 (d, 1H, J 8. 0 Hz, Ph-H), 6. 99-7. 56 (m, 7H, Ph-H), 5. 90 (s, 1H, OH), 2. 49 (t, 2H, J 7. 6 Hz, CH2), 2. 20 (s, 3H, CH3), 1. 88 (s, 3H, CH3), 1. 57-1. 65 (m, 2H, CH2), 1. 26-1. 33 (m, 2H, CH2), 0. 87 (t, 3H, J 7. 2 Hz, CH3); 13C NMR (CDCl3, 100 MHz) 186. 1, 176. 5, 145. 8, 137. 0, 135. 9, 132. 6, 132. 3, 131. 2, 130. 4, 128. 2, 128. 0, 127. 1, 126. 7, 124. 1, 119. 9, 38. 8, 27. 5, 22. 4, 17. 4, 16. 9, 13. 8; Anal. calcd. for C21H25N3OS2: C, 63. 12; H, 6. 31; N, 10. 52; Found C, 63. 05; H, 6. 30; N, 10. 49.

6-Hydroxy -6-ethyl -1, 5 -di(4 -methylphenyl) 1, 3, 5-triazinane-2, 4-dithione (11)

White solid, mp 119-121ºC; IR (KBr) νmax/cm-1 3396, 3264, 3041, 2962, 2925, 2857, 1600, 1583, 1534, 1513, 1472, 1454, 1370, 1223, 1062, 810; 1H NMR (CDCl3, 400 MHz) δ 7. 44 (d, 2H, J 8. 0 Hz, Ph-H), 7. 26-7. 33 (m, 4H, Ph-H), 7. 10 (d, 2H, J 8. 0 Hz, Ph-H), 6. 07 (s, 1H, OH), 2. 51 (s, 3H, CH3), 2. 51 (q, 2H, J 7. 4 Hz, CH2), 2. 29 (s, 3H, CH3), 1. 12 (t, 3H, J 7. 4 Hz, CH3); 13C NMR (CDCl3, 100 MHz) δ 186. 5, 177. 5, 146. 2, 141. 0, 135. 2, 133. 3, 131. 3 (2C), 131. 0, 129. 6 (2C), 127. 8 (2C), 119. 1 (2C), 32. 3, 21. 4, 20. 7, 9. 5; Anal. calcd. for C19H21N3OS2: C, 61. 42; H, 5. 70; N, 11. 31; Found C, 61. 38; H, 5. 70; N, 11. 29.

6-Hydroxy -6-propyl -1, 5 -di(4 -methylphenyl) 1, 3, 5-triazinane-2, 4-dithione (12)

White solid, mp 127-129ºC; IR (KBr) νmax/cm-1 3412, 3321, 3035, 2961, 2925, 2870, 1604, 1539, 1512, 1459, 1409, 1377, 1279, 1208, 1067, 813; 1H NMR (CDCl3, 400 MHz) δ 7. 44 (d, 2H, J 8. 0 Hz, Ph-H), 7. 26-7. 33 (m, 4H, Ph-H), 7. 10 (d, 2H, J 8. 0 Hz, Ph-H), 6. 09 (s, 1H, OH), 2. 49 (s, 3H, CH3), 2. 46 (t, 2H, J 7. 4 Hz, CH2), 2. 29 (s, 3H, CH3), 1. 61-1. 67 (m, 2H, CH2), 0. 89 (t, 3H, J 7. 4 Hz, CH3); 13C NMR (CDCl3, 100 MHz) δ 185. 7, 177. 4, 146. 2, 141. 0, 135. 2, 133. 3, 131. 3 (2C), 131. 0, 129. 5 (2C), 127. 7 (2C), 119. 1 (2C), 41. 0, 21. 4, 20. 7, 18. 8, 13. 8; Anal. calcd. for C20H23N3 OS2: C, 62. 30; H, 6. 01; N, 10. 90; Found C, 62. 37; H, 6. 00; N, 10. 87.

6-Hydroxy -6-butyl -1, 5 -di(4 -methylphenyl) 1, 3, 5-triazinane-2, 4-dithione (13)

White solid, mp 126-127ºC; IR (KBr) νmax/cm-1 3425, 3032, 2958, 2924, 2857, 1599, 1581, 1533, 1508, 1458, 1350, 1282, 1244, 1209, 810; 1H NMR (CDCl3, 400 MHz) δ 7. 43 (d, 2H, J 8. 0 Hz, Ph-H), 7. 25-7. 33 (m, 4H, Ph-H), 7. 09 (d, 2H, J 8. 0 Hz, Ph-H), 6. 08 (s, 1H, OH), 2. 48 (t, 2H, J 7. 6 Hz, CH2), 2. 48 (s, 3H, CH3), 2. 29 (s, 3H, CH3), 1. 56-1. 64 (m, 2H, CH2), 1. 25-1. 32 (m, 2H, CH2), 0. 86 (t, 3H, J 7. 4 Hz, CH3); 13C NMR (CDCl3, 100 MHz) δ 185. 9, 177. 4, 146. 2, 141. 0, 135. 2, 133. 3, 131. 3 (2C), 131. 0, 129. 5 (2C), 127. 7 (2C), 119. 1 (2C), 38. 8, 27. 4, 22. 4, 21. 4, 20. 8, 13. 8; Anal. calcd. for C21H25N3OS2: C, 63. 12; H, 6. 31; N, 10. 52; Found C, 63. 18; H, 6. 29; N, 10. 48.

6-Hydroxy -6-pentyl -1, 5 -di(4 -methylphenyl) 1, 3, 5-triazinane-2, 4-dithione (14)

Yellowish solid, mp 111-113ºC; IR (KBr) νmax/cm-1 3407, 2953, 2929, 2862, 1622, 1588, 1543, 1486, 1456, 1381, 1348, 1287, 1258, 1198, 753; 1H NMR (CDC13, 400 MHz) δ 7. 45 (d, 2H, J 8. 4 Hz, Ph-H), 7. 26-7. 33 (m, 4H, Ph-H), 7. 10 (d, 2H, J 8. 4 Hz, Ph-H), 6. 07 (s, 1H, OH), 2. 50 (s, 3H, CH3), 2. 48 (t, 2H, J 7. 6 Hz, CH2), 2. 30 (s, 3H, CH3), 1. 52-1. 63 (m, 2H, CH2), 1. 25-1. 31 (m, 4H, CH2), 0. 85 (t, 3H, J 7. 0 Hz, CH3); 13C NMR (CDCl3, 100 MHz) δ 186. 0, 177. 4, 146. 2, 141. 0, 135. 2, 133. 3, 131. 3 (2C), 131. 1, 129. 6 (2C), 127. 8 (2C), 119. 1 (2C), 39. 0, 31. 5, 25. 1, 22. 4, 21. 4, 20. 7, 13. 9; Anal. calcd. for C22H27N3OS2: C, 63. 89; H, 6. 58; N, 10. 16; Found C, 63. 97; H, 6. 59; N, 10. 12.

6-Hydroxy -6-hexyl -1, 5 -di(4 -methylphenyl) 1, 3, 5-triazinane-2, 4-dithione (15)

White solid, mp 103-104ºC; IR (KBr) νmax/cm-1 3387, 3063, 2929, 2862, 1600, 1539, 1513, 1476, 1382, 1348, 1298, 1241, 1199, 815; 1H NMR (CDCl3, 400 MHz) δ 7. 43 (d, 2H, J 8. 4 Hz, Ph-H), 7. 26-7. 33 (m, 4H, Ph-H), 7. 10 (d, 2H, J 8. 4 Hz, Ph-H), 6. 07 (s, 1H, OH), 2. 49 (s, 3H, CH3), 2. 47 (t, 2H, J 7. 6 Hz, CH2), 2. 29 (s, 3H, CH3), 1. 59-1. 63 (m, 2H, CH2), 1. 21-1. 28 (m, 6H, CH2), 0. 85 (t, 3H, J 7. 4 Hz, CH3); 13C NMR (CDCl3, 100 MHz) δ 186. 0, 177. 4, 146. 2, 141. 0, 135. 2, 133. 3, 131. 3 (2C), 131. 0, 129. 6 (2C), 127. 8 (2C), 119. 1 (2C), 39. 1, 31. 6, 29. 0, 25. 3, 22. 5, 21. 4, 20. 7, 14. 1; Anal. calcd. for C23H29N3OS2: C, 64. 60; H, 6. 84; N, 9. 83; Found C, 64. 43; H, 6. 83; N, 9. 79.

6-Hydroxy-6-methyl-1, 5-di(4-methoxyphenyl) 1, 3, 5-triazinane-2, 4-dithione (16)

White solid, mp 218-219ºC; IR (KBr) νmax/cm-1 3414, 2959, 2930, 2863, 1619, 1588, 1531, 1456, 1251, 1193, 754; 1H NMR (CDCl3, 400 MHz) δ 7. 33-7. 38 (m, 4H, Ph-H), 7. 13 (d, 2H, J 8. 8 Hz, Ph-H), 6. 85 (d, 2H, J 8. 8 Hz, Ph-H), 6. 01 (s, 1H, OH), 3. 91 (s, 3H, OCH3), 3. 78 (s, 3H, OCH3), 2. 22 (s, 3H, CH3); 13C NMR (CDCl3, 100 MHz) δ 183. 1, 178. 0, 161. 0, 156. 2, 147. 0, 130. 8, 129. 3 (2C), 126. 0, 121. 4 (2C) (2C), 116. 0 (2C), 114. 3 (2C), 55. 6, 55. 5, 26. 1; Anal. calcd. for C18H19N3O3S2: C, 55. 51; H, 4. 92; N, 10. 79; Found C, 55. 60; H, 4. 90; N, 10. 74.

6-Hydroxy -6-ethyl -1, 5 -di(4 -methoxyphenyl) 1, 3, 5-triazinane-2, 4-dithione (17)

White solid, mp 243-245ºC; IR (KBr) νmax/cm-1 3410, 3007, 2963, 2932, 2837, 1606, 1548, 1511, 1469, 1366, 1301, 1252, 824; 1H NMR (CDCl3, 400 MHz) δ 7. 33-7. 36 (m, 4H, Ph-H), 7. 13 (d, 2H, J 8. 8 Hz, Ph-H), 6. 85 (d, 2H, J 8. 8 Hz, Ph-H), 5. 98 (s, 1H, OH), 3. 92 (s, 3H, OCH3), 3. 78 (s, 3H, OCH3), 2. 51 (q, 2H, J 7. 4 Hz, CH2), 1. 13 (t, 3H, J 7. 4 Hz, CH3); 13C NMR (CDCl3, 100 MHz) δ 186. 6, 177. 8, 160. 9, 156. 2, 147. 0, 130. 8, 129. 3 (2C), 126. 0, 121. 4 (2C), 115. 9 (2C), 114. 3 (2C), 55. 6, 55. 5, 32. 3, 9. 5; Anal. calcd. for C19H21N3O3S2: C, 56. 55; H, 5. 25; N, 10. 41; Found C, 56. 46; H, 5. 26; N, 10. 37.

6-Hydroxy-6-propyl-1, 5-di(4-methoxyphenyl) 1, 3, 5-triazinane-2, 4-dithione (18)

White solid, mp 219-221ºC; IR (KBr) νmax/cm-1 3369, 3008, 2961, 2835, 1599, 1543, 1510, 1471, 1379, 1246, 1170, 820; 1H NMR (CDCl3, 400 MHz) δ 7. 32-7. 36 (m, 4H, Ph-H), 7. 13 (d, 2H, J 8. 8 Hz, Ph-H), 6. 85 (d, 2H, J 8. 8 Hz, Ph-H), 6. 01 (s, 1H, OH), 3. 91 (s, 3H, OCH3), 3. 78 (s, 3H, OCH3), 2. 46 (t, 2H, J 7. 2 Hz, CH2), 1. 62-1. 67 (m, 2H, CH2), 0. 89 (t, 3H, J 7. 4 Hz, CH3); 13C NMR (CDCl3, 100 MHz) δ 185. 8, 177. 7, 160. 9, 156. 2, 147. 0, 130. 8, 129. 3 (2C), 126. 0, 121. 4 (2C), 115. 8 (2C), 114. 3 (2C), 55. 6, 55. 5, 41. 0, 18. 8, 13. 8; Anal. calcd. for C20H23N3O3S2: C, 57. 53; H, 5. 55; N, 10. 06; Found C, 57. 58; H, 5. 57; N, 10. 01.

6-Hydroxy -6-methyl -1, 5 -di(4 -chlorophenyl) 1, 3, 5-triazinane-2, 4-dithione (19)

White solid, mp 208-210ºC; IR (KBr) νmax/cm-1 3449, 3286, 2960, 2925, 2856, 1605, 1539, 1491, 1450, 1373, 1300, 1250, 1090, 825; 1H NMR (CDC13, 400 MHz) δ 7. 66 (d, 2H, J 8. 4 Hz, Ph-H), 7. 39-7. 45 (m, 4H, Ph-H), 7. 27 (d, 2H, J 8. 4 Hz, Ph-H), 6. 09 (s, 1H, OH), 2. 23 (s, 3H, CH3); 13C NMR (CDCl3, 100 MHz) δ 183. 3, 177. 3, 145. 1, 137. 2, 136. 2, 131. 9, 131. 2 (2C), 129. 6 (2C), 129. 2 (2C), 128. 8, 120. 1 (2C), 26. 1; Anal. calcd. for C16H13Cl2N3OS2: C, 48. 24; H, 3. 29; N, 10. 55; Found C, 48. 10; H, 3. 30; N, 10. 58.

Figure S8: Click to enlarge


Figure S20: Click to enlarge


Figure S21: Click to enlarge


Figure S23: Click to enlarge


Figure S24: Click to enlarge


Figure S26: Click to enlarge


Figure S27: Click to enlarge


Figure S29: Click to enlarge


Figure S30: Click to enlarge


Figure S32: Click to enlarge


Figure S35: Click to enlarge


Figure S36: Click to enlarge


Figure S37: Click to enlarge


Figure S38: Click to enlarge


Figure S39: Click to enlarge


Figure S40: Click to enlarge


Figure S41: Click to enlarge


Figure S42: Click to enlarge


Figure S44: Click to enlarge


Figure S45: Click to enlarge


Figure S47: Click to enlarge


Figure S48: Click to enlarge


Figure S49: Click to enlarge


Figure S50: Click to enlarge


Figure S51: Click to enlarge


Figure S52: Click to enlarge


Figure S53: Click to enlarge


Figure S54: Click to enlarge


Figure S56: Click to enlarge


Figure S57: Click to enlarge


  • 1. Menicagli, R.; Samaritani, S.; Signore, G.; Vaglini, F.; Via, L. D.; J. Med. Chem. 2004,47,4649;
  • Franzen, R. G.; J. Comb. Chem. 2000,2,195;
  • Nefzi, A.; Ostresh, J. M.; Houghten, R. A.; Chem. Rev. 1997,97,449.
  • 2. Cai, Y. Q.; Wu, W.; Wang, H.; Miyake, J.; Qian, D. J.; Surf. Sci. 2011,605,321.
  • 3. Kostas, I. D.; Andreadaki, F. J.; Medlycott, E. A.; Hanan, G. S.; Monflier, E.; Tetrahedron Lett. 2009,50,1851;
  • Lee, C. H.; Yamamoto, T.; Tetrahedron Lett. 2001,42,3993.
  • 4. Ibrahim, M. A.; Abdel-Rahman, R. M.; Abdel-Halim, A. M.; Ibrahim, S. S.; Allimony, H. A.; J. Braz. Chem. Soc. 2009,20,1275.
  • 5. Klenke, B.; Barrett, M. P.; Brun, R.; Gilbert, I. H.; J. Antimicrob. Chemother. 2003,52,290.
  • 6. Patel, R. B.; Chikhalia, K. H.; Pannecouque, C.; Clercq, E.; J. Braz. Chem. Soc. 2007,18,312.
  • 7. Soong, C. L.; Ogawa, J.; Sakuradani, E.; Shimizu, S.; J. Biol. Chem. 2002,227,7051.
  • 8. Sugimoto, H.; Yamane, Y.; Inoue, S.; Tetrahedron: Asymmetry 2000,11,2067.
  • 9. Bakke, J. M.; Buhaug, J. B.; Ind. Eng. Chem. Res. 2004,43,1962.
  • 10. Murray, A. P.; Miller, M. J.; J. Org. Chem. 2003,68,191;
  • Ghosh, M.; Miller, M. J.; J. Org. Chem. 1994,59,1020.
  • 11. Falorni, M.; Porcheddu, A.; Taddei, M.; Tetrahedron Lett. 1999,40,4395;
  • Luca, L. D.; Giacomelli, G.; Taddei, M.; J. Org. Chem. 2001,66,2534;
  • Babak, K.; Hazarkhani, H.; Synthesis 2003,2547;
  • Dang, Q.; Gomez-Galeno, J. E.; J. Org. Chem. 2002,67,8703.
  • 12. Kaminski, Z. J.; Kolesinska, B.; Kaminska, J. E.; Gora, J.; J. Org. Chem. 2001,66,6276.
  • 13. Omotowa, B. A.; Shreeve, J. M.; Organometallics 2004,23,783;
  • Graeme, C.; Cremiers, H. A.; Rotello, V. M.; Tarbitc, B.; Vanderstraetena, P. E.; Tetrahedron 2001,57,2787.
  • 14. Fournier, J. H.; Maris, T.; Wuest, J. D.; J. Org. Chem. 2004,69,1762;
  • Laliberte, D.; Maris, T.; Wuest, J. D.; J. Org. Chem. 2004,69,1776.
  • 15. Brunsveld, L.; Vekemans, J. A. J. M.; Hirschberg, J. H. K. K.; Sijbesma, R. P.; Meijer, E. W.; Proc. Natl. Acad. Sci. U.S.A. 2002,99,4977.
  • 16. Figueiredo, I. M.; Santos, L. V.; Costa, W. F.; Carvalho, J. E.; Silva, C. C.; Sacoman, J. L.; Kohn, L. K.; Sarragiotto, M. H.; J. Braz. Chem. Soc. 2006,17,954.
  • 17. Han, T.; Cho, J. H.; Oh, C. H.; Eur. J. Med. Chem. 2006,41,825.
  • 18. Yan, K.; Lok, C. N.; Bierla, K.; Che, C. M.; Chem. Commun. 2010,46,7691.
  • 19. Kaboudin, B.; Ghasemi, T.; Yokomatsu, T.; Synthesis 2009,3089.
  • 20. Groenendaal, B.; Vugts, D. J.; Schmitz, R. F.; Kanter, F. J. J.; Ruijter, E.; Groen, M. B.; Orru, R. V. A.; J. Org. Chem. 2008,73,719.
  • 21. Meshcheryakov, V. I.; Albanov, A. I.; Shainyan, B. A.; Russ. J. Org. Chem. (Engl. Transl.) 2005,41,1381.
  • 22. Ali, T. E. S.; Abdel-Monem, W. R.; Phosphorus, Sulfur, Silicon Relat. Elem. 2008,183,2161.
  • 23. Thanigaimalai, P.; Hoang, T. A. L.; Lee, K. C.; Bang, S. C.; Sharma, V. K.; Yun, C. Y.; Roh, E.; Hwang, B. Y.; Kim, Y.; Jung, S. H.; Bioorg. Med. Chem. Lett. 2010,20,2991;
  • Ubarhande, S. S.; Thakare, V. G.; Berad, B. N.; J. Indian Chem. Soc. 2010,87,1137.
  • *
    e-mail:
  • Publication Dates

    • Publication in this collection
      25 Oct 2011
    • Date of issue
      Oct 2011

    History

    • Accepted
      11 Aug 2011
    • Received
      13 May 2011
    Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
    E-mail: office@jbcs.sbq.org.br