SciELO - Scientific Electronic Library Online

 
vol.87 issue1Use of Doehlert and constrained mixture designs in the development of a photo-oxidation procedure using UV radiation/H2O2 for decomposition of landfill leachate samples and determination of metals by flame atomic absorption spectrometryLate quaternary dynamics in the Madeira river basin, southern Amazonia (Brazil), as revealed by paleomorphological analysis author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

Share


Anais da Academia Brasileira de Ciências

Print version ISSN 0001-3765

An. Acad. Bras. Ciênc. vol.87 no.1 Rio de Janeiro Mar. 2015

http://dx.doi.org/10.1590/0001-3765201520140012 

Earth Sciences

On the fossil Remains of Panochthus Burmeister, 1866 (Xenarthra, Cingulata, Glyptodontidae) from the Pleistocene of southern Brazil

José D. Ferreira 1  

Martín Zamorano 2  

Ana Maria Ribeiro 3  

1Programa de Pós-Graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre, RS, Brasil

2Consejo Nacional de Investigaciones Científicas y Técnicas/CONICET, División de Paleontología de Vertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA La Plata, Argentina

3Museu de Ciências Naturais, Fundação Zoobotânica do Rio Grande do Sul, Rua Dr. Salvador França, 1427, Jardim Botânico, 90690-000 Porto Alegre, RS, Brasil

ABSTRACT

The genus Panochthus represents the last lineage of "Panochthini" recorded in the Pleistocene. This genus has a wide latitudinal distribution in South America, and in Brazil it occurs in the southern and northeastern regions. In this paper we describe new material (isolated osteoderms and caudal tube fragments) assigned to Panochthus from the state of Rio Grande do Sul (southern Brazil) and discuss some taxonomic issues related to Panochthus tuberculatus and Panochthus greslebini based on this material . The occurrence of P. greslebini is the first for outside the Brazilian Intertropical Region. In addition, we describe new diagnostic features to differentiate the osteoderms of P. greslebini and P. tuberculatus. Unfortunately, it was not possible to identify some osteoderms at the species level. Interestingly, they showed four distinct morphotypes characterized by their external morphology, and thus were attributed to Panochthus sp. Lastly, we conclude that in addition to P.tuberculatus registered to southern Brazil, there is another species of the genus, assignable to P. cf. P. greslebini. Our analysis reinforce the reliability of caudal tube characters for the classification of species of Panochthus.

Key words: Glyptodontidae; Panochthus; Pleistocene; southern Brazil; osteoderms

RESUMO

O gênero Panochthus representa a última linhagem de "Panochthini" registrado no Pleistoceno. Este gênero tem uma ampla distribuição latitudinal na América do Sul, e no Brasil ocorre nas regiões sul e nordeste. No presente trabalho se descreve novos materiais (osteodermos isolados e fragmentos de tubo caudal) de Panochthus do estado de Rio Grande do Sul (Sul do Brasil) e se discute algumas questões taxonômicas relatada para A ocorrência de P. greslebini é o primeiro para fora da Região Intertropical Brasileira. Além disso, nós descrevemos novas características para diferenciar osteodermos de P. greslebini e P.tuberculatus. Infelizmente, não foi possível identificar alguns osteodermos em nível de espécie. Curiosamente, eles mostraram quatro morfotipos, caracterizados por sua morfologia externa, e atribuídos a Panochthus sp. Finalmente, nós concluímos que ao lado de P.tuberculatus registrados para o sul do Brasil, há outras espécies do gênero designada a P. cf. P. greslebini. Nossas analises reforça a confiabilidade das características do tubo caudal para a classificação das espécies de Panochthus.

Palavras-Chave: Glyptodontidae; Panochthus; Pleistoceno; Sul do Brasil; osteodermos

INTRODUCTION

The tribe "Panochthini" is a taxonomically diverse group of glyptodonts restricted to South America. Its fossil record spans the late Miocene to the late Pleistocene (Zamorano 2012). The genera Panochthus Burmeister, 1866, Nopachtus Ameghino, 1888 and Propanochthus Castellanos, 1925 were traditionally included within this tribe (Castellanos 1942, Hoffstetter 1958, Paula Couto 1979, McKenna and Bell 1997, Zurita et al. 2011, Zamorano 2012); however, in recent cladistic analyses they do not form a natural group (Zamorano and Brandoni 2013, see. Zamorano et al. 2013).

This genus has a wide latitudinal distribution in South America (Tonni and Scillato-Yané 1997), including both southern and northeastern regions (Fig. 1) (Porpino and Bergqvist 2002, Porpino et al. 2004, Ubilla et al. 2004, Zurita et al. 2009a, Zamorano 2012).

Figure 1 - Map of the geographic distribution of Panochthus in the Pleistocene. 

The main characteristics of the genus Panochthus are the osteoderms of the carapace, which have a reticular pattern on the external surface, with small polygonal figures that are flat and equivalent in size, and the caudal tube, which has a similar ornamentation pattern to the carapace (Castellanos 1942). According to a recent review of Panochthus by Zamorano (2012), six species were recognized: P. subintermedius Castellanos, 1937, P. intermedius Lydekker, 1895, P. tuberculatus (Owen, 1845), P. frenzelianus Ameghino, 1889, P. jaguaribensis (Moreira, 1965) and P. greslebini Castellanos, 1942.

The first record of Panochthus, for the territory of Brazil was mentioned by Ihering (1891), in correspondence to Florentino Ameghino, from the coastal plain of the state of Rio Grande do Sul, Santa Vitória do Palmar Municipality. Subsequently, Panochthus was reported from deposits in northeast Brazil (tanks) by Branner (1915) and by several authors (e.g. Moreira 1971, Bergqvist 1993). The fossil content of these tanks was deposited during the late Pleistocene, with available electron spin resonance (ESR) ages dating it to between 63,000 to 10,000 years BP (e.g. Kinoshita et al. 2005, Oliveira et al. 2009, Silva 2009, Dantas et al. 2011). In the northeastern region of Brazil, P. greslebini and P. jaguaribensis are considered endemic species (e.g. Bergqvist 1993, Porpino and Bergqvist 2002, Zamorano 2012, but see Chimento and Agnolin 2011). P. tuberculatus has only been recorded in Rio Grande do Sul (e.g. Bombin 1976, Ribeiro and Scherer 2009). Another dubious record of Panochthus in the Amazon region is referred to by Paula Couto (1956); the material is a single isolated osteoderm collected in the Jurua River, in the state of Acre.

In this paper, we describe new material of the Panochthus from the state of Rio Grande do Sul (southern Brazil) and discuss some taxonomic aspects of the species reported.

MATERIALS AND METHODS

The material studied here belongs to the paleontological collections of the Museu de Ciências Naturais da Fundação Zoobotânica do Rio Grande do Sul (MCN/FZBRS), Museu de Ciências Tancredo Filho Melo (MCTFM), Laboratório de Geologia e Paleontologia da Universidade Federal de Rio Grande (LGP/FURG) and Museu Nacional do Rio de Janeiro (MNRJ), Brazil. The anatomical nomenclature follows Porpino and Bergqvist (2002), while the scheme for the different regions of the carapace is based on; systematics follow Zamorano et al. (2013) (see. Zamorano and Brandoni 2013). The description and terminology for osteoderms follows Hill (2006).

GEOGRAPHIC AND STRATIGRAPHIC PROVENANCE OF MATERIALS

The material was found in the municipalities of Uruguaiana (Touro Passo Creek), Santa Vitória do Palmar (Balneário Hermenegildo, coastal plain and Chui Creek) and Rosário do Sul (Rincão dos Fialho) (Fig. 2).

Figure 2 - Location map of fossiliferous localities. A. Panoramic view of banks exposing the TouroPasso Formation and stratigraphic sequences (modifi ed from Bombin 1976); B. BalneárioHermenegildo and transect of the coastal plain of Rio Grande do Sul, showing its main depositional systems (modifi ed from Tomazelli and Villwock 2005); C. Panoramic view of banks exposed at Chui Creek and stratigraphic sequences (modifi ed from Lopes 2013); D. Rincão dos Fialho, where the material of Panochthus sp was collected. 

Touro Passo Creek (29°40′S, 56°51′W) is 13 km the north of Uruguaiana Municipality (Da-Rosa 2003). Despite this, the biogeographic correlation is discussed since it shares faunal elements with the Sopas Formation (Uruguay), which are not recorded in Buenos Aires province, Argentina (see Ubilla 1985, Oliveira 1996, Ubilla and Perea 1999). According to Milder (2000), the age obtained by thermoluminescence dating, encompasses a time span from 42,600 to 6,400 years BP (Kerber et al. 2011).

Balneário Hermenegildo (53°15′S, 33°42′W) comprises the southern portion of the coastal plain of Rio Grande do Sul, 20 km from Santa Vitória do Palmar. Over time, it has suffered modifications to its landscape related to sea level fluctuations (transgressive-regressive events), which developed four lagoon-barrier systems (Villwock and Tomazelli 1995). The fossil remains of the coastal plain are associated with deposits of lagoon-barrier system III, with an estimated age of 120,000 years BP (Villwock and Tomazelli 1995). The dates obtained for the coastal plain of Rio Grande do Sul show a wide variation from younger than 18,000 to 650,000 years BP (Lopes et al. 2008, 2010). According to Lopes et al. (2010), the mixture of fossils from the middle and late Pleistocene is probably the result of reworking of several fossil beds by successive Quaternary transgressive events.

Chuí Creek (33°35′S; 53°20′W) is located in southernmost part of Rio Grande do Sul, in Santa Vitória do Palmar Municipality. The material was found in situ exposed along the banks of Chuí Creek. The plain through which the creek flows and where the fossil remains of Chuí Creek occur are associated with deposits of lagoon-barrier system III located between coastal barrier II (westwards) and barrier III (eastwards). The age of the fossils of Chuí Creek was estimated to be at least 120,000 years BP based on their location within the barrier-lagoon system III (Lopes et al. 2005). However, subsequently it was demonstrated that these fossils are more recent (Lopes et al. 2010). A sample from the bank of Chuí Creek dated by ESR suggests an age between 42,000 and 33,000 years BP (Lopes et al. 2010). The mammal fossils collected are assigned to the Lujanian age (Oliveira et al. 2005).

Rincão dos Fialho is located in Rosário do Sul Municipality (30°12′S; 55°16′W). It is situated in the southwestern state of Rio Grande do Sul. The material was collected near the Fialho farmhouse, in a stream that cuts through layers of sandy sediments of variable thickness, of Pleistocenic age, that are directly in contact with the Triassic (Ferigolo et al. 1997).

SYSTEMATIC

Superorder Xenarthra Cope, 1889

Order Cingulata Illiger, 1811

Suborder Glyptodontia Ameghino, 1889

Superfamily Glyptodontoidea Gray, 1869

Family Glyptodontidae Gray, 1869

Genus Panochthus Burmeister, 1866

Panochthus tuberculatus (Owen, 1845)

(Fig. 3A; Fig 4C-D)

Figure 3 - A. Panochthus tuberculatus. B. Panochthus. cf. P. greslebini. Scale bars: 10 mm. 

Figure 4 - Caudal tubes. A, A' - B, B'. Panochthus. cf. P. greslebini. A-A', View ventral; B-B', View lateral; C, C' - D, D'. P. tuberculatus. C-C', View ventral; D-D', View lateral. E, E' - F, F'. Panochthus sp. E - E', View dorsal; F - F', View lateral. Abbreviations: a. apical figure; ap. apexian figure; m. marginal figure; t. terminal figure; l. lateral figure; v. ventral figure; d. dorsal figure. Scale bars: 100 mm. 

REFERRED MATERIAL

Caudal tube, right distal portion, LGP P0212. Isolated osteoderms, MCN-PV 3948; MCN-PV 3953.

GEOGRAPHIC PROVENANCE

Balneário Hermenegildo, coastal plain of Rio Grande do Sul.

DESCRIPTION

The caudal tube is a right distal tip belonging to Panochthus tuberculatus. The distal portion is rounded, such as in some specimens of P. tuberculatus, and different from P. greslebini, which is heavily truncated, and P. subintermedius, which is pointed and subtriangular. In dorsal view, it is possible to distinguish two subapical figures, as in P. frenzelianus, P. jaguaribensis and P. tuberculatus. In P. greslebini and P. subintermedius there is just one dorsal figure. In dorsal view, the lateral figure can be seen to be of relatively large size as in P. frenzelianus, and distinct from P. jaguaribensis, P. subintermedius and P. tuberculatus, in which it is smaller. The terminal figure is oriented laterally as in P. frenzelianus and P. tuberculatus, while in P. jaguaribensis and P. greslebini it is oriented ventrally. The terminal figure is surrounded by a shallow slope, which differs from P. subintermedius and P. greslebini. Although the caudal tube is fragmented, it is possible to identify similar figures on the carapace. The morphology of the caudal tube are the most variable in this species (Zamorano et al. 2012).

The osteoderms of the postero-dorsal region of P. tuberculatus are thick and their tubercular figures are larger than in any other species of Panochthus (Fig. 3A).

P. tuberculatus is present in the middle Pleistocene and late Pleistocene of Argentina, Uruguay, southern Brazil, Paraguay and Bolivia (Hoffstetter 1963, 1978, Mones and Francis 1973, Zurita et al. 2009b, Zamorano 2012, Zamorano et al. 2012).

Panochthus cf. P. greslebini

(Fig 3B; Fig 4A-B)

REFERRED MATERIAL

Caudal tube, distal right portion, MCN-PV 32182. Isolated osteoderms: MCN-PV 2594; MCN-PV 3296; MCN-PV 5324; MCN-PV 7131; MCN-PV 8766; MCN-PV 8804; MNRJ 2106-V; MNRJ 2107-V; MNRJ 2138-V; MNRJ 2152-V; MNRJ 2155-V; MNRJ 3537.

GEOGRAPHIC PROVENANCE

Balneário Hermenegildo, coastal plain of Rio Grande do Sul.

DESCRIPTION

The caudal tube, MCN-PV32182, shows an apexian figure, considered an apomorphy of Panochthus greslebini, visible only on the dorsal surface and of subcircular outline (Fig. 4A-A); however, the apexian figure of P. greslebini (DGM 1M) is less deep than in the specimen MCN-PV 32182. In this specimen, it is possible to identify the figure only in posterior view; in anterior view, it is poorly preserved, and it is not possible to describe it in more accurate details.

Ferreira et al. (2013) observed that osteoderms of the lateral region of the carapace present distinctive features to P. greslebini: they are thinner and have smaller tubercles, which, in turn, show a greater distance between the radial sulci (Fig. 3B); the tubercular figures are small and have a flat surface, with a diameter of approximately 2-7 mm. Some osteoderms from the postero-dorsal region show a slight concavity in the center of the plane figures, resembling in this respect P. subintermedius from the early Pleistocene of Argentina Ensenadan age.

P. greslebini is recorded in the Pleistocene of the northeast of Brazil, and is considered an endemic species of the Brazilian intretropical region (Bergqvist 1993, Porpino and Bergqvist 2002).

Panochthus sp.

(Fig. 4E-F; Fig 5; Fig 6)

Figure 5 - Morphotypes of the osteoderms of Panochthus sp. and detail. A-A', Morphotype I; B-B', Morphotype II; C-C', Morphotype III; D-D', Morphotype IV. Scale bars: 10 mm. 

Figure 6 - Distribution of the morphotypes in localities of the study. 

REFERRED MATERIAL

Distal left portion of caudal tube (MCN-PV 2960); isolated osteoderms (MCN-PV3977; MCN-PV 3979; MCN-PV 3980; MCN-PV 3981; MCN- PV 3982; MCN-PV 3987; MCN-PV 3958; MCN-PV 3966; MCN-PV 3965; MCN-PV 3964; MCN-PV 3963; MCN-PV 3954; MCN-PV 3960; MCN-PV3971; MCN-PV 3975; MCN-PV 3985; MCN-PV6897; MCN-PV 6321; MCN-PV 4139; MCN-PV 4617; MCN-PV6326; MCN-PV4616; MCN-PV 4136; MCN-PV 4108; MCN-PV 4098; MCN-PV 4099; MCN-PV 4155; MCN-PV 6967; MCN-PV 8772; MCN-PV 8780; MCN-PV 8508; MCN-PV 7260; MCN-PV 7107; MCN-PV 7118; MCN-PV 1150; MCN-PV 3949; MCN-PV 3957; MCN-PV 3976; MCN-PV 6324; MCN-PV 6325; MCN-PV 6345; MCN-PV 6322; MCN-PV 6323; MCN-PV 6319; MCN-PV 6639; MCN-PV 6657; MCN-PV 6842; MCN-PV 6843; MCN-PV 6859; MCN-PV 5350; MCN-PV 5396; MCN-PV 5420; MCN-PV 5345; MCN-PV 5360; MCN-PV 5441; MCN-PV 5442; MCN-PV 5924; MCN-PV 5394; MCN-PV 5325; MCN-PV 5395; MCN-PV 5923; MCN-PV 5443; MCN-PV 5433; MCN-PV 5700; MCN-PV 5421; MCN-PV 5464; MCN-PV 5341; MCN-PV 5327; MCN-PV 5326; MCN-PV 5445; MCN-PV 5589; MCN-PV 3961; MCN-PV 3951; MCN-PV 3955; MCN-PV 3959; MCN-PV 7112; MCN-PV 6320; MCN-PV 5444; MCN-PV 5551; MCN-PV 4988; MCN-PV 3974; MCN-PV 4001; MCN-PV 4002; MCN-PV 4033; MCN-PV 4738; MCN-PV 4739; MCN-PV 4740; MCN-PV 4741; MCN-PV 4742; MCN-PV 4743; MCN-PV 4744; MCN-PV 4745; MCN-PV 4746; MCN-PV 4747; MCN-PV 8800; MCN-PV 8803; MCN-PV 8805; MCN-PV 2960; MCN-PV 448; MCN-PV 461; MCN-PV 145; MCN-PV 210; MCN-PV 134;MCN-PV 1681; MCN-PV 2043; MCTFM-PV 859; MCTFM-PV 850; MCTFM-PV 117); articulated osteoderms of dorsal carapace (MCN-PV 5659).

GEOGRAPHIC PROVENANCE

Balneário Hermenegildo, coastal plain of Rio Grande do Sul; Rincão dos Fialho and Chuí Creek.

DESCRIPTION

The caudal tube (Fig 4 E-F) has a distal, semi-oval extremity and has a subtriangular shape, ending in a conical tip. In dorsal view, the caudal tube presents only one dorsal figure, shared only by P. greslebini and P. subintermedius, and lacks a secondary dorsal figure, which differs from P. frenzelianus, P. jaguaribensis and P. tuberculatus. The terminal figure is oriented laterally as in P. frenzelianus and P. tuberculatus. Therefore, due to the fragmentary condition of the specimen MCN-PV 2960 and the absence of diagnostic features, its specific assignment is not possible.

All the carapace osteoderms analyzed are pentagonal, hexagonal, rectangular or subquadrangular form, with thicknesses ranging from17.2 mm (MCN-PV 2016) to 42.8 mm (MCN-PV 4139), and show a tendency for merging between the osteoderms, especially those of the lateral side of the carapace. The osteoderms show the general ornamentation pattern of the dorsal region of the carapace of Panochthus, characterized by the presence of multiple polygons on the surface; these polygons are undefined and do not possess the formation of a distinct central figure. In a few osteoderms there is a distinct central figure, typical of the lateral edges of P. tuberculatus and P. frenzelianus (Zamorano 2012). In the south of Brazil, most of the records of glyptodonts are isolated osteoderms, which weakens the establishment of species identifications. Morphological differences that enable us to classify these isolated osteoderms into four main morphotypes were noted (Fig 5).

Morphotype I (MCN-PV 2043, Fig 5A). The contact area between osteoderms has a rough aspect; in the external view the osteoderm presents several subcircular and concave figures, which are separated from each other by shallow radial sulci and limited by shallow radial sulci with foramina in the connection between them. The morphotype I osteoderms are larger than the other morphotypes identified and were found only in the Chuí Creek locality (Fig 6).

Morphotype II (MCN-PV 5659, Fig 5B). The contact area between osteoderms does not have a rough aspect as in morphotype I; in external view the osteoderms present several circular figures, small, prominent and trabecular in aspect. The figures are limited by wide and shallow radial sulci with relatively large foramina. The morphotype II osteoderms are smaller than the morphotypes I and IV, and were found in the Rosário do Sul, Rincão dos Fialho locality and Santa Vitória do Palmar, Balneário Hermenegildo locality (Fig. 6).

Morphotype III (MCN-PV 4988, Fig. 5C). This morphotype is distinguished by deep radial sulci and by clearly polygonal figures (pentagonal and hexagonal), flat and without any trabecular aspect. This morphology suggests that these osteoderms were found in a more lateral region of the carapace. The morphotype III osteoderms were found in Balneário Hermenegildo and Touro Passo Creek.

Morphotype IV (MCTFM-PV 117, Fig 5D). This type presents a spongy aspect, making it possible to differentiate small figures on the surface of the osteoderm. The morphotype IV osteoderms differ from the other morphotypes by their greater thickness; they are quite similar to Neuryurus trabeculatus Zurita and Ferrero 2009 (UAP 1510, Fig 2G) in external view, but in lateral view, N.traberculatuspresents layers of compact bone that are much thicker than in Panochthus, with a smaller maximum diameter, and in internal view fewer foramina are observed (eight to ten in N. trabeculatus and three in the Brazilian material, MCTFM-PV 117). The morphotype IV osteoderms were found in Balneário Hermenegildo and Chui Creek.

The morphotypes present significant morphological differences, which could indicate that the osteoderms are from different areas of the carapace. Chuí Creek and Balneário Hermenegildo are the localities with the most morphological diversity of osteoderms. However, it is interesting to note that the morphotype I osteoderms were found only in Chuí Creek. At present, it is safer to assign these specimens to Panochthus sp.

DISCUSSION AND CONCLUSIONS

Thus far, the previous records of Panochthus tuberculatus in Rio Grande do Sul (Paula Couto 1943, Bombin 1976) are dubious. Oliveira (1996) in a study on the Xenartha of Rio Grande do Sul, analyzed the material assigned to P. tuberculatus and considered it as Panochthus sp. because the specimens were isolated and insufficiently preserved osteoderms, which were not enough to differentiate the species. In addition, Kerber and Oliveira (2008) revised the fauna of mammals from Touro Passo based on new materials, and proposed the presence of Panochthus sp. previously reported to the locality by Bombin (1976) as P. tuberculatus. Herein, we identify P.tuberculatus and P. cf. P. greslebini to the Balneário Hermenegildo, while for the other locations studied (Touro Passo Creek, Chuí Creek and Rincão dos fialhos ) assigning Panochthus sp.

The caudal tubes, although very fragmented, are more informative than osteoderms, and they were cautiously used to identify Panochthus tuberculatus and P. cf. P. greslebini. Unfortunately, the caudal tubes are derived from the continental shelf, so they do not possess a stratigraphic context. Thus, a better identification of these species is still dependent on new findings from the continental Quaternary beds.

All other osteoderms despite having different shapes (quadrangular, pentagonal and hexagonal) show the same reticular pattern, characteristic of the genus. The depth of the radial sulci may vary considerably in Panochthus, according to its localition on the carapace so it cannot be used as a diagnostic feature. Most of the osteoderms found could not be assigned to a particular species; however, some individual were possible to be identified at level. An example of this are the osteoderms of P. frenzelianus located on the caudal edge of the carapace, which bear an opening that narrows down and closes with a rounded, almost cylindrical cross-section (Zamorano 2012). It has also been found that the osteoderms of the postero-dorsal region of P. tuberculatus and lateral osteoderms of P.greslebini can be used to distinguish these species (see Fig 3).

The species of Panochthus show the external surface of osteoderms i similar morphological pattern comprising small tubercles. Particularly, in P.intermedius (antero-dorsal and postero-dorsal regions) and P. jaguaribensis (dorsal region following Moreira 1971) the carapace shows the typical rosette pattern (Zurita et al. 2011); however, Costa Pereira et al. (2014) interpret this fragment of P.jaguaribensis as having similarities with the cephalic shield of other species of Panochthus. The pattern differs from that observed on the dorsal regions of the carapace of P. frenzelianus, P. tuberculatus and P. greslebini, in which a clear reticular pattern is observed (Zamorano 2012). Porpino and Bergqvist (2002) point out that the carapace of P.jaguaribens is less thick than in P. greslebini, and that this feature represents another distinguishing characteristic among the taxa. Costa Pereira et al. (2014) indicate the need detailed revision of P. jaguaribensis.

There are some diagnostic features at least for some species of Panochthus (presence of main figures in osteoderms from the antero and posterodorsal regions of carapace in P. intermedius and presence of an apexian figure in P. greslebini, for instance). Furthermore, some authors (e.g. Cruz et al. 2011) have argued that the species of Panochthus can be differentiated by unique combinations of carapace and caudal tube characteristics.

Moreira (1971) observed a wide variation between specimens of P. greslebini, interpreted by him as ontogenetic. Chimento and Agnolin (2011) described a piece fragment of caudal tube from Santiago del Estero province, Argentina, this fragment described and figured by them, do not present evidence apexian figure, but a detailed note on the figure provided by these authors in view ventral is observed two ventral figure, which do not correspond to P.greslebini. It is noteworthy that that the fragment described here may actually represent the first occurrence of P. greslebini outside the Brazilian Intertropical Region. The presence of the species P. subintermedius (based in MCN-PV 2960) may not be ruled out either, although it is a taxon typical of the early-middle Pleistocene, while P. greslebini and P. jaguaribensis are from the Pleistocene sensu lato and considered endemic to the northeast of Brazil (Bergqvist 1993, Porpino and Bergqvist 2002).

In Brazil, the fossil record of Panochthus is restricted to the southern and northeast of Brazil (see Fig 1); the fossils recorded between these regions are mainly in cave of karstic origin (see. Lund 1839, Salles et al. 2006, Castro and Langer 2011, Ghilardi et al. 2011, Silva et al. 2012). The glyptodonts previously reported for this type of depositional environment are Glyptodon and Hoplophorus. The absence of Panochthus in these localities may be due to the lack of further study in these regions, where the Pleistocene deposits are still poorly known.

Zurita et al. (2005) suggested that the strong development of frontonasal sinuses and a strongly pneumatized skull in Neosclerocalyptus and Panocthus played a major rule in thermoregulation and would represent an adaptation for savanna-like environments in a semiarid climate period. Carlini et al. (2004)suggest, based on the fauna of Mesopotamia Argentine, southern Brazil and Uruguay West, would be associated an environmental conditions wetter and warm.

During the Quaternary, there were several glacial cycles, with cold and dry periods interrupted by hot and wetter periods (Haberle and Maslin 1999). Multiple pulses of expansion/contraction of the fields and regression/transgression of sea levels were recorded. According to Scillato-Yane et al. (2002) during mainly the last interglacial period there was development of an ecological corridor connecting the Mesopotamia region of Argentine with the intertropical region of Brazil. Sánchez et al. (2004) propose a corridor along the east of South America and some coastal areas of the Atlantic, which was formed during regression of sea level, and was used by mammals adapted to mesic environments. These pulses can justify the concurrent presence of genera from intertropical and pampean regions through the Pleistocene, for example: Panochthus, PampatheriumGervais and Ameghino, 1880, Holmesina Simpson 1930, Glyptodon Owen, 1839 and Notiomastodon Cabrera, 1929 in southern Brazil mainly in the plain coast of Rio Grande do Sul. The interesting thing is the simultaneous presence of purportedly endemic intertropical species and pampaean species belonging to those genera in the same area (see Oliveira and Pereira 2009).

ACKNOWLEDGEMENTS

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support to J.D.F. as a fellowship of the Programa de Pós-Graduação em Geociências/Universidade Federal do Rio Grande do Sul; FZBRS and LGP-V FURG for the infrastructure provided; D.da Silva, L.Kerber,V.G. Pitana (in memoriam), E.V.Oliveira, K.O.Porpino and A.E.Zurita for reading and commenting on the first version of the manuscript; we are greatly indebted to D.D.Rego (MNRJ), R.P.Lopes (LGP/FURG), R.R.Machado (DNPM) and J. Pereira (MCTFM) for enabling access to the specimens studied; and to L. Rota for enabling access to comparative material under his care.

REFERENCES

BERGQVIST LP. 1993. Jazimentos Pleistocênicos do estado da Paraíba e seus fósseis. Rev Nordestina de Biol 8(2): 143-158. [ Links ]

BOMBIN M. 1976. Modelo paleoecológico evolutivo para o Neoquaternário da região da Campanha-Oeste do Rio Grande do Sul (Brasil). A Formação Touro Passo, seu conteúdo fossilífero e a pedogênese pós-deposicional. Comun Ms Cienc PUCRS 15: 1-90. [ Links ]

BRANNER JC. 1915. Geologia Elementar. Rio de Janeiro: Francisco Alves & Cia, 396 p. [ Links ]

CARLINI AA, ZURITA AE, GASPARINI G AND NORIEGA JI. 2004. Los Mamíferos del Pleistoceno de la Mesopotamia argentina y su relación con los del Centro Norte de la Argentina, Paraguay y Sur de Bolivia, y los del Sur de Brasil y Oeste de Uruguay: Paleobiogeografía y Paleoambientes. INSUGEO, Miscelánea 12: 83-90. [ Links ]

CASTELLANOS A. 1942. A propósito de los géneros Plohophorus, Nopachthus y Panochthus (3a parte). Publ Inst Fisiogr Geol 11: 417-592. [ Links ]

CASTRO MC AND LANGER MC. 2011. The mammalian fauna of Abismo Iguatemi, southeastern Brazil. J of Cave and Karst Stud 73(2): 83-92. [ Links ]

CHIMENTO NR AND AGNOLIN FL. 2011. Mamíferos del Pleistoceno superior de Santiago del Estero (Argentina) y SUS afinidades paleobiogeográficas. Pap Avulsos Zool Ms Zool USP 51(6): 83-100. [ Links ]

COSTA PEREIRA PVLG, VICTER GD, PORPINO KO AND BERGQVIST LP. 2014. Osteoderm histology of Late Pleistocene cingulates from the intertropical region of Brazil. Acta Palaeontologica Polonica 59(3): 543-552. [ Links ]

CRUZ LE, ZAMORANO M AND SCILLATO-YANÉ GJ. 2011. Diagnosis and redescription of Panochthus subintermediusCastellanos (Xenarthra, Glyptodontia) from the Ensenadan (early-middle Pleistocene) of Buenos Aires (Argentina). Paläontologische Zeitschrift 85: 115-123. [ Links ]

DA-ROSA ÁAS. 2003. Preliminary correlation of fluvial deposits at the extreme west Rio Grande do Sul State, Southern Brazil. In: Latinamerican Congress of Sedimentology, Belém, Brazil, p. 243-245. [ Links ]

DANTAS MAT, PORPINO OP, BAUERMANN APN, COZZUOL M.A. KINOSHITA A, BARBOSA JHO AND BAFFA O. 2011. Megafauna do Pleistoceno superior de Sergipe, Brasil: registros taxonômicos e cronológicos. Rev Brasil Paleontol 14(3): 311-320. [ Links ]

FERIGOLO J, TOLEDO PM AND GRESELE CTG. 1997. Haplomastodon waringi (HOLLAND, 1920) (Anancinae, Proboscidea, Mammalia) de Rosário do Sul (RS, Brasil): atlas, anatomia e taxonomia. Rev Universidade de Guarulhos - Geociênc, São Paulo 2(6): 82-85. [ Links ]

FERREIRA, JD, ZAMORANO M AND RIBEIRO AM. 2014. Considerações sobre a morfologia de osteodermos de Panochthus grelebini (Xenarthra, Glyptodontidae). XXII CONGRESSO BRASILEIRO DE PALEONTOLOGIA, Gramado, RS , Boletin de Resumos... p. 226-227. [ Links ]

GHILARDI A M, FERNANDES MA AND BICHUETTE ME. 2011. Megafauna from the Late Pleistocene-Holocene deposits of the Upper Ribeira karst area, southeast Brazil. Quat Int 245(2): 369-378. [ Links ]

HABERLE SG AND MASLIN MA. 1999. LATE Quaternary vegetation and climate change in the Amazon basin based on a 50,000 year pollen record from the Amazon fan, ODP site 932. Quat Res 51: 27-38. [ Links ]

HILL RV. 2006. Comparative anatomy and histology of xenarthran osteoderms. J Morphology 267: 1441-1460. [ Links ]

HOFFSTETTER R. 1958. Xenarthra. In: Piveteau J (Ed), Paris: Traité de Paléontologie 6(2): 535-636. [ Links ]

HOFFSTETTER R. 1963. Les glyptodontes du Pléistocène de Tarija (Bolivie). 1: Genres Hoplophorus et Panochthus. Comptes Rendus Soc Geol Fr 5:126-133. [ Links ]

HOFFSTETTER R. 1978. Une faune de mammifères pléistocènes au Paraguay. Comptes Rendus Soc Geol Fr: 32-33. [ Links ]

IHERING HVON 1891. Correspondencia entre el Dr. Florentino Ameghino y el Dr. Herman Von Ihering. In: Torcelli EJ (Ed), Obras completas e correspondência científica. Taller Impr Of: 131-134. [ Links ]

KERBER L AND OLIVEIRA EV. 2008. Fósseis de vertebrados da Formação Touro Passo (Pleistoceno Superior), Rio Grande do Sul, Brasil: atualização dos dados e novas contribuições. Gaea 4(2): 49-64. [ Links ]

KERBER L, KINOSHITA A, JOSÉ FA, FIGUEIREDO AMG, OLIVEIRA EV AND BAFFA O. 2011. Electron Spin Resonance dating of the southern Brazilian Pleistocene mammals from TouroPasso Formation, and remarks on the geochronology, fauna and palaeoenvironments. Quat Int 245: 201-208. [ Links ]

KINOSHITA A, FRANCA AM, ALMEIDA JACDE, FIGUEIREDO AM, NICOLUCCI P, GRAEFF CFO AND BAFFA O. 2005. ESR dating at k and x band of northeastern Brazilian megafauna. Appl Radiat Isot 62(2): 225-229. [ Links ]

LOPES RP, BUCHMANN FSC, CARON F AND ITUSARRY MEGS. 2005. Barrancas Fossilíferas do Arroio Chuí, RS - Importante megafauna pleistocênica no extremo sul do Brasil. In: Winge M, Schobbenhaus C, Berbert-Born M, Queiroz ET, Campos DA, Souza CRG and Fernandes ACS (Eds), Sítios Geológicos e Paleontológicos do Brasil: SIGEP 119: 1-9. [ Links ]

LOPES RP, BUCHMANN FSC AND CARON F. 2008. Taphonomic analysis on fossils of Pleistocene mammals from deposists submerged along Southern Rio Grande do Sul Coastal Plain, Brazil. Rio de Janeiro. Arq Ms Nac 66(2): 213-229. [ Links ]

LOPES RP, OLIVEIRA LK, FIGUEIREDO AMG, KINOSHITA A, BAFFA O AND BUCHMANN FSC. 2010. ESR dating of Pleistocene mammal teeth and its implications for the biostratigraphy and geologic evolution of the Rio Grande do Sul coastal plain, southern Brazil. Quat Int 212: 213-222. [ Links ]

LOPES RP. 2013. Biostratigraphy of the Pleistocene Fossiliferous Deposits of the Southern Brazilian Coastal Area. J Mammalian Evol 20: 69-82. [ Links ]

LUND PW. 1839. Blik paa Brasiliens dyreverden för sidste jorgdomvaeltning. Anden afhandling: Pattedyrene (Lagoa Santa d. 16 de novbr.1837) . Det Kong Dansk Videskab Selsk Naturvidensk og Mathemat Afhandl 8: 61-144. [ Links ]

MCKENNA MC AND BELL SK. 1997. Classification of Mammals above the Species Level. New York: Columbia University Press, p. 631 . [ Links ]

MILDER SES. 2000. Arqueologia do sudeste do Rio Grande do Sul: uma perspectiva geoarqueológica. Pós-Graduação em Arqueologia, Universidade de São Paulo, Tese de Doutorado, 172 p. [ Links ]

MONES A AND FRANCIS JC. 1973. Lista de los vertebrados fósiles del Uruguay, II. Mammalia. Comun Paleo Ms Hist Nat Montevideo 1: 39-97. [ Links ]

MOREIRA LE. 1971. Os gliptodontes do nordeste do Brasil. An Acad Bras Cienc 43: 592-552. [ Links ]

OLIVEIRA EV. 1996. Mamíferos Xenarthra (Edentata) do Quaternário do Estado do Rio Grande do Sul, Brasil. Ameghiniana 33(1): 65-75. [ Links ]

OLIVEIRA EV AND PEREIRA JP. 2009. Rev Brasileira de Palontol 12(3): 167-178. [ Links ]

OLIVEIRA EV, PREVOSTI FJ AND PEREIRA JC. 2005. Protocyon troglodytes (Lund) (Mammalia, Carnivora) in the late Pleistocene of Rio Grande do Sul, and their paleoecological significance. Rev Brasil Paleontol 8(3): 215-220. [ Links ]

OLIVEIRA EV, BARRETO AMF AND ALVES RS. 2009. Aspectos sistemáticos, paleobiogeográficos e paleoclimáticos dos mamíferos quaternários de Fazenda Nova, PE, nordeste do Brasil. Gaea 5(2):75-85. [ Links ]

PAULA COUTO C. 1943. Vertebrados fósseis do Rio Grande do Sul. Porto Alegre: Tipografia Thrumann, p. 49. [ Links ]

PAULA COUTO C. 1956. Mamíferos fósseis do Cenozóico da Amazônia. Bol Conselho Nac Pesq 3: 1-121. [ Links ]

PAULA COUTO C. 1979. Tratado de Paleomastozoologia. Rio de Janeiro, Acad Bras Cienc, 590 p. [ Links ]

PORPINO KO AND BERGQVIST LP. 2002. Novos achados de Panochthus (Mammalia, Cingulata, Glyptodontoidea) no Nordeste do Brasil. Rev Brasil Paleontol 4: 51-62. [ Links ]

PORPINO KO, SANTOS MDEFC AND BERGQVIST LP. 2004. Registros de mamíferos fósseis no Lajedo de Soledade, Apodi, Rio Grande do Norte, Brasil. Rev Brasil Paleontol 7(3): 349-358. [ Links ]

RIBEIRO AM AND SCHERER CS. 2009. Mamíferos do Pleistoceno do Rio Grande do Sul Brasil. In: Ribeiro AM, Bauermann SG and Scherer CS (Eds), Quaternário do Rio Grande do Sul, Integrando conhecimentos. Porto Alegre: Sociedade Brasileira de Paleontologia, p. 171-191. [ Links ]

SALLES LO, CARTELLE C, GUEDES PG, BOGGIANI PC, JANOO A AND RUSSO CA. 2006. Quaternary mammals from Serra da Bonoquena, Mato Grosso do Sul, Brazil. Boletim do Museu Nacional, Nova Série Zoologia 521:1-12. [ Links ]

SÁNCHEZ B, PRADO JL AND ALBERDI MT. 2004. Feeding ecology dispersal, and extinction of South American Pleistocene gomphotheres (Gomphotheriidae, Proboscidea). Paleobiology 30(1): 146-161. [ Links ]

SCILLATO-YANÉ GJ, CARLINI AA, TONNI EP, NORIEGA JI AND KEMER R. 2002. Holmesina paulacoutoi, un pampaterio septrentrional y la importancia de su registro en el Cuaternario de la Mespotamia Argentina. 8º Congreso Argentino de Paleontología y Bioestratigrafía, Resúmenes, 54 p. [ Links ]

SILVA DD, SEDOR FA AND RIBEIRO AM. 2012. Equus (Amerhippus) neogaeus Lund, 1840 (Perissodactyla, Equidae) no Quaternário do Estado do Paraná, Brasil. Rev Brasil Paleontol 15(3): 336-344. [ Links ]

SILVA JLL. 2009. Reconstituição paleoambiental baseada no estudo de mamíferos pleistocênicos de maravilha e poço das trincheiras, alagoas, nordeste do Brasil: Pós-Graduação em Geociências, Universidade Federal de Pernambuco, Recife, Tese de Doutorado, 244 p. [ Links ]

TOMAZELLI LJ AND VILLWOCK JA. 2005. Mapeamento geológico de planícies costeiras: o exemplo da costa do Rio Grande do Sul. Gravel 3: 109-111. [ Links ]

TONNI EP AND SCILLATO-YANÉ GJ. 1997. Una nueva localidad con mamíferos pleistocenos en el Norte de la Argentina. Aspectos paleozoogeográficos (resumen). In: Actasdel VI Congreso da Associação Brasileira de Estudos do Quaternário e Reunião sobre o Quaternário da América do Sul, Curitiba: Brasil, p. 345-348. [ Links ]

UBILLA M. 1985. Mamíferos fósiles, geocronología y paleoecología de la Formación Sopas (Pleistoceno Superior) del Uruguay. Ameghiniana 22(3-4): 185-196. [ Links ]

UBILLA M AND PEREA D. 1999. Quaternary vertebrates from Uruguay: a biostratigraphic, biogeographic and climatic overview. Quat S Am Antarct Peninsula 12: 75-90. [ Links ]

UBILLA M, PEREA D, AGUILAR CG AND LORENZO N. 2004. Late Pleistocene vertebrates from northern Uruguay: tools for biostratigraphic, climatic and environmental reconstruction. Quat Int 114: 129-142. [ Links ]

VILLWOCK JA AND TOMAZELLI LJ. 1995. Geologia Costeira do Rio Grande do Sul. Notas Técnicas, Publicação CECO-UFRGS, Porto Alegre 8: 1-45. [ Links ]

ZAMORANO M. 2012. Los Panochthini (Xenarthra, Glyptodontidae): Sistemática y Evolución. Facultad de Ciencias Naturales y Museo Universidad Nacional de La Plata, La Plata, Tese de doutorado, p. 278. [ Links ]

ZAMORANO M, MONES A, SCILLATO-YANÉ GJ. 2012. Redescripción y designación de un neotipo de Panochthus tuberculatus (Owen) (Mammalia: Cingulata: Glyptodontidae): Rev Brasil Paleontol 15(1):113-122. [ Links ]

ZAMORANO M AND BRANDONI D. 2013. Phylogenetic analysis of the Panochthini (Xenarthra, Glyptodontidae), with remarks on their temporal distribution. Alcheringa 37:1-10. [ Links ]

ZAMORANO M, SCILLATO-YANÉ GJ AND ZURITA AE. 2013. An enigmatic and large-sized specimen of Panochthus (Glyptodontidae, "Panochthini") from the Ensenadan (Early-Middle Pleistocene) of the Pampean region, Argentina. Rev Mexicana de Biodiversidad 84:847-854. [ Links ]

ZURITA AE, CARLINI AA, ZAMORANO M, SCILLATO-YANÉ GJ AND RIVAS DURAN B. 2009b. Una nueva especie de Panochthus Burmeister (Xenarthra: Glyptodontidae: Panochthini) del Pleistoceno de Bolivia. Ameghiniana 46 Suplemento: 57R. [ Links ]

ZURITA AE AND FERRERO BS. 2009. Uma nueva espécie de Neuryurus Ameghino (Mammalia, Glyptodontidae) en el Pleistoceno tardío de la Mesopotamia de Argentina. GEOBIOS 42: 663-673. [ Links ]

ZURITA AE, MIÑO-BOILINI AR, SOIBELZON E, CARLINI AA AND PAREDES-RÍOS F. 2009a. The diversity of Glyptodontidae (Xenarthra, Cingulata) in the Tarija Valley (Bolivia): systematic, biostratigraphic and paleobiogeographic aspects of a particular assemblage. Neues Jahrbuch für Geologieund Paläontologie 251: 225-237. [ Links ]

ZURITA AE, SCILLATO-YANÉ GJ AND CARLINI AA. 2005. Paleozoogeographic, and systematic aspects of the Genus Sclerocalyptus Ameghino, 1891 (Xenarthra, Glyptodontidae) of Argentina. J South Am Earth Sci 20: 121-129. [ Links ]

ZURITA AE, ZAMORANO M, SCILLATO-YANÉ GJ, GONZÁLEZ-RUIZ LR, RIVAS DURÁN B AND CÉSPEDEZ PAZ R. 2011. An exceptional Pleistocene specimen of Panochthus Burmeister (Xenarthra, Glyptodontoidea) from Bolivia: its contribution to the understanding of the early-middle Pleistocene Panochthini. Comptes Rendus Palevol 10: 655-664. [ Links ]

Received: January 23, 2014; Accepted: April 03, 2014

Correspondence to: José Darival Ferreira E-mail: darival.fds@gmail.com

Creative Commons License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.