Acessibilidade / Reportar erro

Ostracoda and foraminifera from Paleocene (Olinda well), Paraíba Basin, Brazilian Northeast

ABSTRACT

Paleocene ostracods and planktonic foraminifera from the Maria Farinha Formation, Paraíba Basin, are herein presented. Eleven ostracod species were identified in the genera Cytherella Jones, Cytherelloidea Alexander, Eocytheropteron Alexander, Semicytherura Wagner, Paracosta Siddiqui, Buntonia Howe, Soudanella Apostolescu, Leguminocythereis Howe and, probably, Pataviella Liebau. The planktonic foraminifera are represented by the genera Guembelitria Cushman, Parvularugoglobigerina Hofker, Woodringina Loeblich and Tappan, Heterohelix Ehrenberg, Zeauvigerina Finlay, Muricohedbergella Huber and Leckie, and Praemurica Olsson, Hemleben, Berggren and Liu. The ostracods and foraminifera analyzed indicate an inner shelf paleoenvironment for the studied section. Blooms of Guembelitria spp., which indicate either shallow environments or upwelling zones, were also recorded reinforcing previous paleoenvironmental interpretations based on other fossil groups for this basin.

Key words:
Brazil; ostracods; Paleocene; Paraíba Basin; foraminifera

INTRODUCTION

The Paraíba Basin, located in northeastern Brazilian, is well known for its remarkable paleontological content, and by a rather continuous and exposed record of the Cretaceous-Paleogene (K-Pg) boundary. The Upper Cretaceous (Maastrichtian) deposits of this basin constitute the Gramame Formation, while the Paleogene ones are included in the Maria Farinha Formation. The Gramame Formation is characterized by deposits of both calcareous marl and marl without siliciclastic influence deposited in a high energy shallow platform environment under low to moderate action of periodic storms. The overlying Maria Farinha Formation is composed also of calcareous marl, as well as marls with more siliciclastic influence (see Barbosa et al. 2006BARBOSA JA, VIANA MSS AND NEUMANN VH. 2006. Paleoambientes e icnofácies da sequência carbonática (Cretáceo e Paleogeno) da Bacia Paraíba, NE do Brasil. Rev Bras Geo 36(3): 73-90. and references therein).

The interval between the end of Cretaceous and the beginning of Paleogene was characterized by several catastrophic events that caused the extinction of a significant part of the biota and the emergence of new lineages. Many hypotheses have been proposed as the main triggers of those changes. According to one of them, the impact of an asteroid would have been the causal factor of the mass extinctions (Alvarez et al. 1980ALVAREZ LW, ALVAREZ W, ASARO F AND MICHEL HV. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208(4448): 1095-1108.). In another hypothesis, proposed by Courtillot et al. (1986COURTILLOT V, BESSE J, VANDAMME D, MONTIGNY R, JAEGER J AND CAPPETTA H. 1986. Deccan flood basalts at the Cretaceous/Tertiary boundary. Earth Planet Sci Lett 80: 361-374.), the extinction would have been caused by the intense volcanism in Deccan, India (the so-called Deccan traps), which caused huge continental flows of basalt (CFB) associated with the large igneous regions. More recently Keller et al. (2003KELLER G, STINNESBECK W, ADATTE T AND STUEBEN D. 2003. Multiple impacts across the Cretaceous-Tertiary boundary. Earth-Sci Rev 62: 327-363.) and Keller (2014) sustained that these changes in the Earth were caused by several events acting simultaneously.

According to Birch et al. (2016BIRCH HS, COXALL HK, PEARSON PN, KROON D AND SCHMIDT DN. 2016. Partial collapse of the marine carbon pump after the Cretaceous-Paleogene boundary. Geology 44(4): 287-290.), the coherence of terrestrial and marine proxy data is especially strong with regard to warming beginning near 65.9-66.0 Ma, a peak of warming from 65.8 to 65.6 Ma, and cooling immediately before the K-Pg, and the authors interpret these as climate shifts of global extent. Based on paleontological data, Ashrof and Stinnesbeck (1989), suggested important climatic changes from tropical to subtropical conditions during the Maastrichtian to a subtropical to temperate conditions during the Paleocene in the Paraíba Basin. Oxygen isotope data corroborate this interpretation, showing a slight increase of temperature during the Cretaceous-Paleogene transition, followed by a slight temperature decrease in the Paraíba Basin (Nascimento et al. 2011NASCIMENTO MVS, SIAL AN, FERREIRA VP, NEUMANN VH, BARBOSA JA, PIMENTEL MM AND LACERDA LD. 2011. Cretaceous-Paleogene transition at the Paraíba Basin, Northeastern, Brazil: Carbon-isotope and mercury subsurface stratigraphies. J S Am Earth Sci 32: 379-392. ). The Paleogene deposits of the Paraíba Basin are interpreted as shallow marine environments connected with a regressive event (lowstand system tract) (e.g., Mabesoone et al. 1991MABESOONE JM, DAMASCENO JM, OLIVEIRA LDD AND OLIVEIRA MIM. 1991. Paleontologia estratigráfica. In: Mabesoone JM (Ed), Revisão Geológica da Faixa Sedimentar Costeira de Pernambuco, Paraíba e Rio Grande do Norte, Recife: Universidade Federal de Pernambuco, Estudos e Pesquisas, Série B 10: 105-109., Barbosa et al. 2003BARBOSA JA, SOUZA EM, LIMA FILHO MF AND NEUMANN VH. 2003. A estratigrafia da Bacia Paraíba: uma reconsideração. Estudos Geológicos 13: 89-108., 2006, Fauth et al. 2005FAUTH G, COLIN JP, KOUTSOUKOS EA AND BENGTSON P. 2005. Cretaceous/Tertiary boundary ostracodes from the Poty Quarry, Pernambuco, northeastern Brazil. J S Am Earth Sci 19(3): 285-305., Córdoba et al. 2007CÓRDOBA VC, SA EFJ, SOUZA DC AND ANTUNES AF. 2007. Bacia de Pernambuco-Paraíba. B Geoci Petrobras 15(2): 391-404.). This event is interpreted as a regression forced by the combination of eustatic sea level fall (Haq 2014HAQ BU. 2014. Cretaceous Eustasy Revisited. Global and Planetary Change 113: 44-58.) and local rising tectonic processes (Barbosa et al. 2003). Due to the regression, the strata of the Maria Farinha Formation were preserved only in a narrow belt along the coast.

The Maria Farinha Formation holds abundant and well-preserved microfossil assemblages, including calcareous nannofossils, foraminifers, palynomorphs and ostracods. The first study on Paleogene ostracods of the Paraíba Basin was carried out by Tinoco (1967TINOCO IM. 1967. Micropaleontologia da Faixa Sedimentar Costeira Recife-João Pessoa. Bol Soc Bras Geol 16(1): 81-85.), who reported the occurrence of the marine genera Cytherella Jones, Costa Neviani, Cytheretta Muller, Bairdia M’Coy, Monoceratina Roth, Cytheropteron Sars, Pontocythere Dubowsky and Paracypris Sars. Stinnesbeck and Reyment (1988) reported that the ostracod assemblages in the Maria Farinha Formation contain rare but well-preserved Brachycythere sp., Dahomeya sp. and Soudanella laciniosaApostolescu 1961APOSTOLESCU V. 1961. Contribution à l’étude paléontologique (Ostracodes) et stratigraphique des bassins crétacés et tertiaires de l’Afrique occidentale. Rev I Fr Petrol 16(7/8): 779-867.. A more comprehensive study, carried out by Fauth et al. (2005FAUTH G, COLIN JP, KOUTSOUKOS EA AND BENGTSON P. 2005. Cretaceous/Tertiary boundary ostracodes from the Poty Quarry, Pernambuco, northeastern Brazil. J S Am Earth Sci 19(3): 285-305.), reported abundant and diverse ostracod assemblages composed of 17 species, with three of them described as new. According to Fauth (2002), the Paleocene ostracod fauna has strong affinities with north, central and southern of South America, and west, north and central Africa.

The Maastrichtian and Paleogene sections in the Paraíba Basin are well characterized by planktonic foraminifer studies (Mabesoone et al. 1968MABESOONE JM, TINOCO IM AND COUTINHO PM. 1968. The Mesozoic-Tertiary boundary in northeastern Brazil. Palaeogeogr Palaeocl 4: 161-185., Tinoco 1967TINOCO IM. 1967. Micropaleontologia da Faixa Sedimentar Costeira Recife-João Pessoa. Bol Soc Bras Geol 16(1): 81-85., 1976, 1977, 1978, Tinoco and Siqueira 1976). Subsequently, biostratigraphic and paleoenvironmental studies were intensified (Albertão et al. 1994ALBERTÃO GA, KOUTSOUKOS EAM, REGALI MPS, ATTREP M AND MARTINS PP. 1994. The Cretaceous-Tertiary boundary in southern low-latitude regions: preliminary study in Pernambuco, northeastern Brazil. Terra Nova 6: 366-375., Stinnesbeck and Keller 1995, Koutsoukos 1996KOUTSOUKOS EAM. 1996. Phenotypic experiments into new pelagic niches in early Danian planktonic foraminifera: aftermath of the K/T boundary event. In: Hart MB (Ed), Biotic Recovery from Mass Extinctions Events. London: Geological Society Special Publication 102: 319-335., 2006, Gertsch et al. 2013GERTSCH B, KELLER G, ADATTE T AND BERNER Z. 2013. The Cretaceous-Tertiary boundary (KTB) transition in NE Brazil. J Geol Soc 170: 249-262.), mainly in the K-Pg boundary sequence of the Poty quarry, where the uppermost Maastrichtian Plummerita hantkeninoides Zone (CF1) was identified. In the Paleocene, the upper Pα, P1a/P1b and P1c zones were identified, above a biostratigraphic gap at the base, which was recognized by the absence of the Guembelitria cretacea Zone (P0) and the basal part of Pα (Koutsoukos 1996, 2006), which may extend up to the top of Plummerita hantkeninoides Zone (CF1) according to the studies of Gertsch et al. (2013).

The main purpose of this article is to present the microfossil assemblages (Foraminifera and Ostracoda) from the Olinda well, Paraíba Basin, in order to contribute to the taxonomic, stratigraphic and paleoenvironmental knowledge of the Maria Farinha Formation, and provide additional data on the geological evolution of this basin in the Paleocene.

STUDY AREA AND GEOLOGICAL SETTING

The geological evolution of eastern Brazilian sedimentary basins is related to the breakup of the western Gondwana supercontinent and development of the South Atlantic Ocean in the Late Jurassic-Early Cretaceous (Cainelli and Mohriak 1999, Mohriak et al. 2008). The onshore and offshore areas of the Paraíba Basin comprise approximately 7600 km2 and 31400 km2, respectively, extending to the isobath of 3000 m. The south limit of this basin in the coastal zone is the Pernambuco Shear Zone (ZCPE), and the north limit is the Patos Shear Zone (ZCPA) (Fig. 1).

Figure 1
The Paraíba Basin, showing the position of the studied well in Olinda city, Pernambuco State, Brazil (modified from Barbosa et al. 2003BARBOSA JA, SOUZA EM, LIMA FILHO MF AND NEUMANN VH. 2003. A estratigrafia da Bacia Paraíba: uma reconsideração. Estudos Geológicos 13: 89-108. and Gertsch et al. 2013GERTSCH B, KELLER G, ADATTE T AND BERNER Z. 2013. The Cretaceous-Tertiary boundary (KTB) transition in NE Brazil. J Geol Soc 170: 249-262.).

The tectonism that originated and shaped the Paraíba Basin generated two depocenters that split the basin into the Olinda Sub-basin and the Alhandra/Miriri Sub-basin. The first one is bordered in the south by the Pernambuco Shear Zone (ZCPE), and in the north with the Alhandra/Miriri Sub-basin by the Goiania High. The Alhandra/Miriri is limited in the north by the Mamanguape Fault (Mabesoone and Alheiros 1988, 1993, Barbosa et al. 2003BARBOSA JA, SOUZA EM, LIMA FILHO MF AND NEUMANN VH. 2003. A estratigrafia da Bacia Paraíba: uma reconsideração. Estudos Geológicos 13: 89-108.).

The evolution of the Olinda Sub-basin is characterized by three tectonic phases. The first phase is represented by the opening and emergence of a rift (NW-SE) in the distal portion of the sub-basin. Subsequently, a distensive phase (NE-SW) was set up with the formation of valleys and filled by clastic wedges. Finally, in the third phase (Paleogene), the NW-SE structures were reactivated, influencing the limestone deposits.

The sedimentary deposits of the Paraíba Basin consist of a continental-transitional sequence (Beberibe and Itamaracá formations) including the Coniacian?-Campanian interval, a marine sequence (Itamaracá, Gramame and Maria Farinha formations) deposited in the Campanian-Paleocene (Lima Filho et al. 1998, Barbosa et al. 2003BARBOSA JA, SOUZA EM, LIMA FILHO MF AND NEUMANN VH. 2003. A estratigrafia da Bacia Paraíba: uma reconsideração. Estudos Geológicos 13: 89-108.), a restricted reef-lagoon (Tambaba Formation), corresponding to the Eocene (Correia Filho et al. 2015), and finally the continental siliciclastic sequence (Miocene-Recent) represented by the Barreiras Formation and recent deposits.

The Maria Farinha Formation overlies the Gramame Formation and is underlain by an erosional contact (Albertão and Martins 1996). It was deposited in a deep-middle neritic environment, and its lithology changes from limestone in the base to siliciclastic (shales) in the upper portion. According to Barbosa et al. (2006BARBOSA JA, VIANA MSS AND NEUMANN VH. 2006. Paleoambientes e icnofácies da sequência carbonática (Cretáceo e Paleogeno) da Bacia Paraíba, NE do Brasil. Rev Bras Geo 36(3): 73-90.) this lithostratigraphic unit is restricted to the Olinda Sub-basin (south part of the Paraíba Basin) due to the tectonically forced regression that influenced the deposition in the Paleocene in the north Alhandra/Miriri Sub-basin.

MATERIALS AND METHODS

The studied material consists of 16 samples collected along a stratigraphical interval of 8.05 m of the Olinda well. This core was drilled by the Universidade Federal de Pernambuco (UFPE) near the Poty quarry, in Olinda City, Pernambuco State (UTM 0296669E 9116303N) (Fig. 1). In the lower portion, it consists mostly of limestone and, in the upper, the incidence of siliciclastic rocks is higher. For this study, samples were chosen from the Paleocene, which was correlated using the distribution of the ostracod fauna of Fauth et al. (2005FAUTH G, COLIN JP, KOUTSOUKOS EA AND BENGTSON P. 2005. Cretaceous/Tertiary boundary ostracodes from the Poty Quarry, Pernambuco, northeastern Brazil. J S Am Earth Sci 19(3): 285-305.) and the international foraminiferal biostratigraphical framework by Gradstein et al. (2012GRADSTEIN FM, OGG JG, SCHMITZ MD AND OGG GM. 2012. The Geologic Time Scale 2012. Elsevier 1 and 2, 1-435 and 437-1144.).

The analyzed section (39.15 m-31.35 m) is represented by limestone with lithologic variations. In the base of the section (38.15m-38.05m), grayish conglomeratic limestone predominates and show the presence of bioturbation, sparse sedimentary structures and intraclasts. Near to the base (38.97 m), there is a thin clay layer. In the middle (38.05 m-33.96 m) beige marl predominates and contain in the lower to middle part dark clay layers (37.1 m, 37.0 m, 36.7 m and 35.5 m), and in the middle to upper part the occurrence of convolution (post-depositional processes, slumps?) sparse intraclasts and bioclasts. The top of the section presents interspersed layers of grayish marly limestone and dark gray marl. There are records of sedimentary structures and intraclasts. At 33.1 m depth is a rich layer of bioclasts. Bioturbation was registered along all the section.

The samples were prepared according to the usual techniques for calcareous microfossils, which consist basically in an overnight soaking in hydrogen peroxide P.A. (H2O2), washing over a 0.062 mm sieve and H2O2 under heat for 2 hours. Afterwards, the samples were split into three meshes (0.250, 0.180 and 0.062 mm) and dried at 60°C. All ostracods and foraminifera from the three fractions were picked. Whenever necessary, the specimens were cleaned in ultrasonic baths for a few minutes before being imaged under a scanning electron microscope (SEM). The figured specimens are deposited at the collections of the Departamento de Geologia, Universidade Federal de Pernambuco, under the prefix DGEO-CTG-UFPE followed by their respective catalogue numbers.

SYSTEMATIC PALEONTOLOGY

OSTRACODS

Taxonomy follows the classification by Horne (2005HORNE DJ. 2005. Ostracoda. In: Selley RC et al. (Eds), Encyclopedia of Geology, Oxford: Elsevier, p. 453-463.). For the species in open nomenclature a brief description is included. The following abbreviations and conventions are employed: L: length, H: height, W: width; very small (<0.400 mm), small (0.400-0.500mm), medium (0.510-0.700 mm), large (0.710-0.900 mm), very large (>0.900 mm); C: carapace, RV: right view, LV: left view, DV: dorsal view. All measurements are in millimeters (mm).

Class Ostracoda Latreille 1802

Subclass Podocopa Sars 1866

Order Platycopida Sars 1866

Suborder Platycopina Sars 1866

Superfamily Cytherelloidea Sars 1866

Family Cytherellidae Sars 1866

Genus Cytherella Jones 1849

Cytherella piacabucuensis Neufville 1973 NEUFVILLE EMH. 1973. Upper Cretaceous-Palaeogene Ostracoda from the South Atlantic. Publications from the Palaeontological Institution of the University of Uppsala, Special Volume 1: 1-205.

Figure 2, a

Figure 2
Scanning electron micrographs of ostracods from Paleocene, Maria Farinha Formation, Paraíba Basin. a. Cytherella piacabucuensis Neufville, 1973NEUFVILLE EMH. 1973. Upper Cretaceous-Palaeogene Ostracoda from the South Atlantic. Publications from the Palaeontological Institution of the University of Uppsala, Special Volume 1: 1-205., C, LV, DGEO-CTG-UFPE-1432. b. Cytherella sp. 1, C, LV, DGEO-CTG-UFPE-1410. c-d. Cytherella sp. 2, c, C, LV, DGEO-CTG-UFPE-1411; d, same specimen DV. e-f. Cytherelloidea sp., e, C, LV, DGEO-CTG-UFPE-1412; f, C, DV DGEO-CTG-UFPE-1413. g-i. Eocytheropteron sp., g, C, RV, DGEO-CTG-UFPE-1414; h, C, DV, DGEO-CTG-UFPE-1415; i, C, LV, DGEO-CTG-UFPE-1416. j-l. Semicytherura sp., j, C, male, RV, DGEO-CTG-UFPE-1417; k, same specimen, LV; l, C, male, DV, DGEO-CTG-UFPE-1418. Scale bars: a-f=100 μm; g-l=50 μm.

1973 Cytherella piacabucuensis Neufville, pp. 38-41, Pl. 6.1, Figs. 3a-b, Pl. 6.2, Figs. 1a-b.

1979 Cytherella piacabucuensis. Neufville, p. 137-138, Pl. 1, Figs. 3a-d.

1990 Cytherella piacabucuensis. Bassiouni and Luger, p. 777-778, Pl. 1, Figs. 7-12.

2005 Cytherella piacabucuensis. Fauth et al., p. 286, 288, 289 and 290, Pl. 4, Figs. 1-4.

Material: Eight C.

Illustrated material: DGEO-CTG-UFPE-1432: C, LV, L: 0.630; H: 0.409.

Occurrence: Olinda well, 35.25 m, 37.35 m.

Stratigraphic distribution: Middle Paleocene-lower Eocene of Egypt (Bassiouni and Luger 1990), Danian of the Sergipe-Alagoas Basin, Brazilian northeast (Neufville 1973NEUFVILLE EMH. 1973. Upper Cretaceous-Palaeogene Ostracoda from the South Atlantic. Publications from the Palaeontological Institution of the University of Uppsala, Special Volume 1: 1-205., 1979) and Paleocene of the Paraíba Basin (Fauth et al. 2005FAUTH G, COLIN JP, KOUTSOUKOS EA AND BENGTSON P. 2005. Cretaceous/Tertiary boundary ostracodes from the Poty Quarry, Pernambuco, northeastern Brazil. J S Am Earth Sci 19(3): 285-305. and this work).

Remarks: Cytherella piacabucuensis is a good stratigraphic marker for Paleogene strata in Brazilian and African Basins.

Cytherella sp. 1

Figure 2, b

Material: Two C.

Illustrated material: DGEO-CTG-UFPE-1410: C, LV, L: 0.550; H: 0.320.

Short description: Medium-sized carapace; sub-rectangular in lateral view. RV overlaps the LV symmetrically along all margins. Anterior margin somewhat asymmetrically rounded; posterior margin less broadly rounded than the anterior. Dorsal and ventral margins almost straight and subparallel. Maximum height in the anterior third of the carapace. Surface entirely covered by small punctuations.

Stratigraphic distribution: Paleocene of the Paraíba Basin (this work).

Occurrence: Olinda well, 32.25 m, 34.65 m.

Remarks: Fauth et al. (2005FAUTH G, COLIN JP, KOUTSOUKOS EA AND BENGTSON P. 2005. Cretaceous/Tertiary boundary ostracodes from the Poty Quarry, Pernambuco, northeastern Brazil. J S Am Earth Sci 19(3): 285-305.) recorded a similar species in the Maastrichtian of Poty quarry, Paraíba Basin (Cytherella sp. 2, p. 290-291, Figs. 4.11-12). The species recorded herein differs mainly by the dorsal outline, which is straighter, and the whole punctuated surface. Cytherella harmoniensis Bold 1960, recorded in Eocene of Trinidad, is bigger and more ovate.

Cytherella sp. 2

Figure 2, c-d

Material: Two C.

Illustrated material: DGEO-CTG-UFPE-1411: C, LV and DV, L: 0.660; H: 0.424; W: 0.275.

Short description: Medium-sized carapace; sub-ovoid in lateral view. RV strongly overlapping the LV along all margins. Anterior and posterior margins asymmetrically rounded; posterior end narrower. Dorsal margin arched, ventral margin almost straight. Maximum height and width at the mid region. A depressed region is present in the mid-dorsal part of the carapace. Surface punctuated, more densely in the anterior and posterior regions. The size of the pits decreases towards the periphery of the carapace.

Stratigraphic distribution: Paleocene of the Paraíba Basin (this work).

Occurrence: Olinda well, 38.85-39.15 m.

Remarks: This species differs from other Cytherella species recorded in the Paraíba Basin in the more angular posterodorsal outline, in the punctuation pattern and in the stronger overlap of the RV, along all margins. Cytherella piacabucuensisNeufville 1973NEUFVILLE EMH. 1973. Upper Cretaceous-Palaeogene Ostracoda from the South Atlantic. Publications from the Palaeontological Institution of the University of Uppsala, Special Volume 1: 1-205., recorded in the Middle Paleocene of Egypt (Bassiouni and Luger 1990), Danian of Sergipe-Alagoas Basin (Neufville 1973, 1979) and Danian of the Paraíba Basin (Fauth et al. 2005FAUTH G, COLIN JP, KOUTSOUKOS EA AND BENGTSON P. 2005. Cretaceous/Tertiary boundary ostracodes from the Poty Quarry, Pernambuco, northeastern Brazil. J S Am Earth Sci 19(3): 285-305.) differs mainly in the more symmetrically rounded outline and lack of ornamentation.

Genus Cytherelloidea Alexander 1929

Cytherelloidea sp.

Figure 2, e-f

Material: Three C.

Illustrated material: DGEO-CTG-UFPE-1412: C, LV, L: 0.622; H: 0.351 DGEO-CTG-UFPE-1413: C, DV. L: 0.524; W: 0.181.

Short description: Medium-sized carapace; laterally compressed; subrectangular in lateral view. RV larger than LV, overlapping it strongly in the dorsal and posteroventral regions; dorsal margin sloping gently backwards; ventral margin almost straight. Posterior margin obliquely truncate; anterior margin broadly rounded, gently denticulate. Maximum height just behind the middle portion; greatest width at the posterior third. External surface strongly pitted, presence of an antero-marginal ridge and two longitudinal ridges: a very sinuous medium ridge, running from the posterior region to the middle one; a shorter ventrolateral ridge, from the posterior to the medium region. Stratigraphic distribution: Paleocene of the Paraíba Basin (this work).

Occurrence: Olinda well, 36.15 m.

Remarks: This species is similar to Cytherelloidea sp. aff. C. keijiMckenzie 1967MCKENZIE KG. 1967. Recent Ostracoda from Port Phillip Bay, Victoria. Proc Roy Soc Victoria 80(1): 61-106. from the Paleocene of Senegal (Diop et al. 1982DIOP A, GUERNET C AND POIGNANT A. 1982. Microfaune du Paléogène de quelques sondages du dôme du Sénégal occidental; observations sur les Ostracodes. Geobios-Lyon 15(1): 19-31.), but presents two median ridges. Compared with Cytherelloidea keiji Mckenzie 1967, recorded firstly in Recent deposits, the Brazilian specimens are shorter, with median ridges more sinuous and dorsal margin slightly concave. It is worthy to be mentioned that Malz (1981MALZ H. 1981. Paläozäne Ostracoden von den Emperor Seamounts, NW-Pazific. Zitteliana 7: 3-29.) reassigned C. keiji to Keijcyoidea Malz, a genus proposed on Paleocene material from the Emperor Seamounts Ridge, in the Pacific Ocean. Bergue and Coimbra (2002) recorded the genus Keijcyoidea in Holocene deposits from Brazilian equatorial shelf. Therefore, Cytherelloidea sp. possibly constitutes the first fossil species of Keijcyoidea recorded in Brazil.

Order Podocopida Sars 1866 Suborder Cytherocopina Baird 1850 Superfamily Cytheroidea Baird 1850 Family Cytheruridae G.W. Müller 1894

Genus Eocytheropteron Alexander 1933

Eocytheropteron sp.

Figure 2, g-i

Material: Five C.

Illustrated material: DGEO-CTG-UFPE-1414, C, RV. L: 0.328; H: 0.189. DGEO-CTG-UFPE-1415, C, DV. L: 0.327; W: 0.173; DGEO-CTG-UFPE-1416, C, LV. L: 0.317; H: 0.188.

Short description: Carapace very small, subtrapezoidal in lateral view, egg-shaped in dorsal view, short caudal process, without wing-like lateral expansions. LV overlapping the RV conspicuously along all margins, except the dorsal one, where this pattern is inverted. Maximum height just behind the middle portion; greatest width at the middle. Surface smooth.

Stratigraphical distribution: Paleocene of the Paraíba Basin (this work).

Occurrence: Olinda well, 35.55 m, 36.45 m, 37.35 m.

Remarks: Eocytheroteron sp. differs from E. trapezoidalisCarbonnel 1990CARBONNEL G, ALZOUMA K AND DIKOUMA M. 1990. Les ostracodes paléocènes du Niger: taxinomie - un témoignage de l’existence eventuelle de la mer transsaharienne? Geobios-Lyon 23: 671-697., from the Paleocene of Niger, by the smaller size and smooth surface. Furthermore, E. trapezoidalis presents the caudal process more projected upward and acuminated. In the Upper Cretaceous from the Potiguar Basin, Piovesan et al. (2014PIOVESAN EK, CABRAL MC, COLIN JP, FAUTH G AND BERGUE CT. 2014. Ostracodes from the Upper Cretaceous deposits of the Potiguar Basin, northeastern Brazil: taxonomy, paleoecology and paleobiogeography. Part 2: Santonian-Campanian. Carnets Geol 14(15): 315-351.) recorded two species of Eocytheropteron, both differing significantly from the species here recorded, especially in size, outline and ornamentation.

Genus Semicytherura Wagner 1957

Semicytherura sp.

Figure 2, j-l

Material: Two C.

Illustrated material: DGEO-CTG-UFPE-1417, C; DV; L: 0.395, H: 0.202, W: 0.178; DGEO-CTG-UFPE-1418, C; LV; L: 0.364, H: 0.189.

Short description: Carapace very small, subrectangular and elongate in lateral view; LV overlaps the RV in dorsal and posteroventral regions. Dorsal margin almost straight, ventral margin with small concavity in the mid-length. Anterior margin nearly rounded, posterior margin subtriangular, with a truncated caudal process slightly above the mid-height. Maximum width at posterior third. Anterior region very compressed. Surface with small and irregular reticula and weak ribs in ventral and dorsal regions. Eye tubercles pronounced.

Stratigraphical distribution: Paleocene of the Paraíba Basin (this work).

Occurrence: Olinda well, 36.45 m, 37.35 m.

Remarks: This species resembles Semicytherura musacchioiPiovesan, Cabral and Colin 2014PIOVESAN EK, CABRAL MC, COLIN JP, FAUTH G AND BERGUE CT. 2014. Ostracodes from the Upper Cretaceous deposits of the Potiguar Basin, northeastern Brazil: taxonomy, paleoecology and paleobiogeography. Part 2: Santonian-Campanian. Carnets Geol 14(15): 315-351., recorded in the Santonian-Campanian of the Potiguar Basin (Piovesan et al. 2014), but has a more rounded anterior outline, weaker reticula and the maximum width at the posterior third.

Family Hemicytheridae Puri 1953

Genus PataviellaLiebau 1991LIEBAU A. 1991. Skulptur-Evolution bei Ostrakoden am Beispiel europäischer “Quadracytheren”. Geol Paläont Westf 13: 1-395.

Pataviella? sp.

Figure 3, a-b

Figure 3
Scanning electron micrographs of ostracods from the Paleocene, Maria Farinha Formation, Paraíba Basin. a-b. Pataviella? sp., a, C, RV, ULVG 11473, DGEO-CTG-UFPE-1419; b, same specimen, DV. c. Paracosta recifeiensisFauth et al. 2005FAUTH G, COLIN JP, KOUTSOUKOS EA AND BENGTSON P. 2005. Cretaceous/Tertiary boundary ostracodes from the Poty Quarry, Pernambuco, northeastern Brazil. J S Am Earth Sci 19(3): 285-305., C, RV, DGEO-CTG-UFPE-1420. d-f . Buntonia sp., d, C, RV, DGEO-CTG-UFPE-1421; e, C, LV, DGEO-CTG-UFPE-1422; f, C, DV, DGEO-CTG-UFPE-1423. g . Soudanella lacioniosa Apostolescu 1961APOSTOLESCU V. 1961. Contribution à l’étude paléontologique (Ostracodes) et stratigraphique des bassins crétacés et tertiaires de l’Afrique occidentale. Rev I Fr Petrol 16(7/8): 779-867., C, female, LV, lost specimen. h-i . Leguminocythereis sp., h, C, male, DV, DGEO-CTG-UFPE-1424; i, same specimen, RV. Scale bars = 100 μm.

Material: Five C.

Illustrated material: DGEO-CTG-UFPE-1419, C, RV and DV, L: 0.585; H: 0.308, W: 0.273.

Short description: Medium-sized carapace, subrectangular in lateral view. LV overlaps the RV more conspicuously in the posterodorsal and anterodorsal margins. Dorsal outline slightly convex, ventral margin, straight to concave at the mid. Anterior outline obliquely rounded and posterior subtriangular caudate. Anteromarginal denticles very small. Surface reticulated, with a conspicuous rib that runs from post-ocular sulcus to the posterior region; another strong rib is alate and subparallel to the ventral margin. Eye tubercles conspicuous; subcentral tubercle well-developed.

Stratigraphical distribution: Paleocene of the Paraíba Basin (this work).

Occurrence: Olinda well, 36.15 m, 36.45 m, 37.35 m.

Remarks: This taxon is tentatively assigned to PataviellaLiebau 1991LIEBAU A. 1991. Skulptur-Evolution bei Ostrakoden am Beispiel europäischer “Quadracytheren”. Geol Paläont Westf 13: 1-395., but has the dorsal rib less convex and more elongated shape. The most similar species is P. mbeganendouriSarr 1999SARR R. 1999. Le Paléogène de la région de Mbour-Joal (Sénégal occidental): biostratigraphie, étude systématique des ostracodes, paléoenvironnement. Revue Paleobiol 18(1): 1-29. , recorded in Paleocene strata of Senegal. The African species differs in the posterior outline, which is more rounded, and the more robust and convex dorsal rib.

Family Trachyleberididae Sylvester-Bradley 1948

Genus Paracosta Siddiqui 1971

Paracosta recifeiensis Fauth et al. 2005FAUTH G, COLIN JP, KOUTSOUKOS EA AND BENGTSON P. 2005. Cretaceous/Tertiary boundary ostracodes from the Poty Quarry, Pernambuco, northeastern Brazil. J S Am Earth Sci 19(3): 285-305.

Figure 3, c

2005 Paracosta recifeiensis Fauth et al., p. 295-296, Pl. 5, Figs. 10,13,14, Pl. 6, Figs. 1-3.

Material: One C.

Illustrated material: DGEO-CTG-UFPE-1420, C; RV; L: 0.660, H: 0.320.

Stratigraphical distribution: Lower Danian of the Paraíba Basin (Fauth et al. 2005FAUTH G, COLIN JP, KOUTSOUKOS EA AND BENGTSON P. 2005. Cretaceous/Tertiary boundary ostracodes from the Poty Quarry, Pernambuco, northeastern Brazil. J S Am Earth Sci 19(3): 285-305.), Paleocene (this work).

Occurrence: Olinda well, 36.15 m.

Remarks: This species is typical from Danian of the Paraíba Basin (Fauth et al. 2005FAUTH G, COLIN JP, KOUTSOUKOS EA AND BENGTSON P. 2005. Cretaceous/Tertiary boundary ostracodes from the Poty Quarry, Pernambuco, northeastern Brazil. J S Am Earth Sci 19(3): 285-305.). The only specimen recorded is probably a juvenile, due to its smaller size compared to the holotype.

Subfamily Buntoniinae Apostolescu 1961APOSTOLESCU V. 1961. Contribution à l’étude paléontologique (Ostracodes) et stratigraphique des bassins crétacés et tertiaires de l’Afrique occidentale. Rev I Fr Petrol 16(7/8): 779-867.

Genus Buntonia Howe 1935

Buntonia sp.

Figure 3, d-f

Material: Three C.

Illustrated material: DGEO-CTG-UFPE-1421, C, RV. L: 0.684; H: 0.375; DGEO-CTG-UFPE-1422, C; LV; L: 0.672, H: 0.383; DGEO-CTG-UFPE-1423, C; DV; L: 0.580, W: 0.300.

Short description: Medium-sized carapace, subrectangular to ovoid, in lateral view. LV overlaps the RV in posterodorsal, dorsal and anterodorsal margins. Dorsal margin almost straight, ventral margin rather convex. Anterior outline obliquely rounded; posterior angular. Strongly ovoid in dorsal view. The anterior, posterior and ventral regions compressed. Anteromarginal rib very developed. Surface covered with small puncutations, except in the compressed regions.

Stratigraphical distribution: Paleocene of the Paraíba Basin (this work).

Occurrence: Olinda well, 36.15 m, 37.35 m.

Remarks: The genus Buntonia Howe is very common in the Paleocene of African basins (e.g., Apostolescu 1961APOSTOLESCU V. 1961. Contribution à l’étude paléontologique (Ostracodes) et stratigraphique des bassins crétacés et tertiaires de l’Afrique occidentale. Rev I Fr Petrol 16(7/8): 779-867., 1963, Reyment 1963REYMENT RA. 1963. Studies on Nigerian upper Cretaceous and lowerTertiary Ostracoda, part 2: Danian, Paleocene, and Eocene Ostracoda. Stockholm Contr Geol 10: 1-287., Foster et al. 1983FOSTER CA, SWAIN FM AND PETTERS SW. 1983. Late Paleocene Ostracoda from Nigeria. Rev E Micropaleontol 15(1): 103-166., Okosun 1987OKOSUN EA. 1987. Ostracod biostratigraphy of the eastern Dahomey Basin, Niger Delta and the Benue Trough of Nigeria. Bulletin of the Geological Survey of Nigeria 41: 1-151., Carbonnel et al. 1990CARBONNEL G, ALZOUMA K AND DIKOUMA M. 1990. Les ostracodes paléocènes du Niger: taxinomie - un témoignage de l’existence eventuelle de la mer transsaharienne? Geobios-Lyon 23: 671-697., Sarr 1999SARR R. 1999. Le Paléogène de la région de Mbour-Joal (Sénégal occidental): biostratigraphie, étude systématique des ostracodes, paléoenvironnement. Revue Paleobiol 18(1): 1-29. ) and South America (e.g., Bertels 1973BERTELS A. 1973. Ostracodes of the type localiy of the Lower Tertiary (lower Danian) Rocanian Stage and Roca Formation (Argentina). Micropaleontology 19(3): 308-340. , Ceolin et al. 2011CEOLIN D, FAUTH G AND COIMBRA JC. 2011. Cretaceous-Lower Paleogene ostracods from the Pelotas Basin, Brazil. Palaeobio Palaeoenv 91: 111-128. ). This species differs from others by its rounded posterior outline and strong anteromarginal rib clearly seen in dorsal view. Compared to Buntonia tichittensis Apostolescu 1961, from the Paleocene of Senegal, our species is bigger, the punctuation is less prominent and the anterodorsal sulcus absent. Probably, it is a new species, but the scarcity and poor preservation of the material prevents its description.

Genus SoudanellaApostolescu 1961APOSTOLESCU V. 1961. Contribution à l’étude paléontologique (Ostracodes) et stratigraphique des bassins crétacés et tertiaires de l’Afrique occidentale. Rev I Fr Petrol 16(7/8): 779-867.

Soudanella laciniosa Apostolescu 1961APOSTOLESCU V. 1961. Contribution à l’étude paléontologique (Ostracodes) et stratigraphique des bassins crétacés et tertiaires de l’Afrique occidentale. Rev I Fr Petrol 16(7/8): 779-867.

Figure 3, g

1961 Soudanella laciniosa laciniosa n. g. n. sub. sp. Apostolescu, p. 809, Pl. 6, Figs.

124-126; Pl. 7, Fig. 136; Pl. 16, Figs. 304-306.

1973 Soudenella [sic] laciniosa triangulata Apostolescu. Neufville, p. 96-98, Pl. 6.11, Figs. 1 a-b.

1979 Soudanella laciniosa Apostolescu. Neufville, p. 153-154, Pl. 6, Figs. 1 a-b.

1991 Soudanella laciniosa Apostolescu. Reyment and Aranki, p. 24, Pl. 2, Figs. 1a-b, 2a-b, 3a-b.

1998 Soudanella cf. S. laciniosa laciniosa Apostolescu. Colin et al., p. 311, Pl. 3, Fig. 28.

2005 Soudanella laciniosa Apostolescu. Fauth et al., p. 299-301, Pl. 8, Figs. 1-6.

Material: Three C (two broken).

Illustrated material: C, LV. L: 1.361; H: 0.862 (lost).

Stratigraphical distribution: Paleocene of Nigeria (Reyment 1963REYMENT RA. 1963. Studies on Nigerian upper Cretaceous and lowerTertiary Ostracoda, part 2: Danian, Paleocene, and Eocene Ostracoda. Stockholm Contr Geol 10: 1-287., Foster et al. 1983FOSTER CA, SWAIN FM AND PETTERS SW. 1983. Late Paleocene Ostracoda from Nigeria. Rev E Micropaleontol 15(1): 103-166., Okosun 1987OKOSUN EA. 1987. Ostracod biostratigraphy of the eastern Dahomey Basin, Niger Delta and the Benue Trough of Nigeria. Bulletin of the Geological Survey of Nigeria 41: 1-151.); Paleocene-Eocene of Senegal (Apostolescu 1961APOSTOLESCU V. 1961. Contribution à l’étude paléontologique (Ostracodes) et stratigraphique des bassins crétacés et tertiaires de l’Afrique occidentale. Rev I Fr Petrol 16(7/8): 779-867., Diop et al. 1982DIOP A, GUERNET C AND POIGNANT A. 1982. Microfaune du Paléogène de quelques sondages du dôme du Sénégal occidental; observations sur les Ostracodes. Geobios-Lyon 15(1): 19-31.) and Togo (Damotte 1982DAMOTTE R. 1982. Ostracodes maestrichtiens et paléocènes du Togo. Cah Micropaleontol 2: 47-63., Carbonnel and Johnson 1989); Upper Paleocene of Benin (Carbonnel and Oyede 1991) and Mali (Colin et al. 1998COLIN JP, TAMBAREAU Y AND KRASHENENNIKOV VA. 1998. Maastrichtian and Paleocene ostracode assemblages of Mali (western Africa). Slovenska Akademija Znanosti in Umetnosti 34(2): 273-345.); Danian of the Sergipe-Alagoas (Neufville 1973NEUFVILLE EMH. 1973. Upper Cretaceous-Palaeogene Ostracoda from the South Atlantic. Publications from the Palaeontological Institution of the University of Uppsala, Special Volume 1: 1-205., 1979) and Paraíba basins, Brazil (Fauth et al. 2005FAUTH G, COLIN JP, KOUTSOUKOS EA AND BENGTSON P. 2005. Cretaceous/Tertiary boundary ostracodes from the Poty Quarry, Pernambuco, northeastern Brazil. J S Am Earth Sci 19(3): 285-305.).

Occurrence: Olinda well, 35.25 m, 35.55 m, 39.15 m.

Remarks: The genus Soudanella Apostolescu is a remarkable taxon that appears in the Paleocene of some African and South American basins. In Brazil, S. laciniosa is a Danian bioestratigraphical marker in the some Brazilian basins, including the Paraíba Basin.

Subfamily Campylocytherinae Puri 1960

Genus Leguminocythereis Howe 1936

Leguminocythereis sp.

Figure 3, h-i

Material: Four C.

Illustrated material: DGEO-CTG-UFPE-1424, C, DV and RV. L: 0.868; H: 0.409, W: 0.394.

Short description: Carapace large, subrectangular and elongate in lateral view. LV overlaps the RV along all margins, mainly in the anterodorsal and posterodorsal margins. Dorsal margin almost straight, ventral margin with a concavity at the middle part. Anterior outline broadly rounded and posterior subtriangular. Anteromarginal rib present. Surface reticulated and with well-developed longitudinal ribs. Anterior region with three ribs, parallel to the anterior margin; intercostal region coarsely reticulated.

Stratigraphical distribution: Paleocene of the Paraíba Basin (this work).

Occurrence: Olinda well, 37.05 m, 37.35 m.

Remarks: This species is similar to Leguminocythereis senegalensisApostolescu 1961APOSTOLESCU V. 1961. Contribution à l’étude paléontologique (Ostracodes) et stratigraphique des bassins crétacés et tertiaires de l’Afrique occidentale. Rev I Fr Petrol 16(7/8): 779-867., firstly recorded in Eocene of Senegal and later in the Paleocene-Eocene of Nigeria (Reyment 1963REYMENT RA. 1963. Studies on Nigerian upper Cretaceous and lowerTertiary Ostracoda, part 2: Danian, Paleocene, and Eocene Ostracoda. Stockholm Contr Geol 10: 1-287., Okosun 1987OKOSUN EA. 1987. Ostracod biostratigraphy of the eastern Dahomey Basin, Niger Delta and the Benue Trough of Nigeria. Bulletin of the Geological Survey of Nigeria 41: 1-151.). The Brazilian species has a more acuminate and elongate posterior region and presents three ribs in the anterior region.

PLANKTONIC FORAMINIFERA

Suprageneric classification follows chiefly Loeblich and Tappan (1988), modified by Sen Gupta (1999). Additional literature adopted are Ellis and Messina (1940), Bolli (1957BOLLI HM. 1957. The genera Globigerina and Globorotalia the Paleocene-Lower Eocene Lizard Springs Formation of Trinidad, B.W.I. Bull. U.S. Natl Mus 215: 61-81.), Nederbragt (1991NEDERBRAGT AJ. 1991. Late Cretaceous biostratigraphy and development of Heterohelicidae (planktic foraminifera). Micropaleontology 37: 329-372.), Koutsoukos (1996KOUTSOUKOS EAM. 1996. Phenotypic experiments into new pelagic niches in early Danian planktonic foraminifera: aftermath of the K/T boundary event. In: Hart MB (Ed), Biotic Recovery from Mass Extinctions Events. London: Geological Society Special Publication 102: 319-335., 2014), Olsson et al. (1999OLSSON RK, HEMLEBEN C, BERGGREN WA AND HUBER BT. 1999. Atlas of Paleocene planktonic foraminifera. Sm C Paleob 85: 1-252.) Premoli Silva and Verga (2004), Huber (2006HUBER BT. 2006. Portal CHRONOS. Mesozoic Planktonic Foraminiferal Taxonomic Dictionary.Mesozoic Planktonic Foraminiferal Working Group, available at <www.chronos.org>.
www.chronos.org...
) and Portal CHRONOS (http://portal.chronos.org). The synonymic list is simplified and contain the most important species recorded for this work.

Class Foraminiferida d’Orbigny 1826 Order Globigerinina Delage and He’rouard 1896 Superfamily Heterohelicacea Cushman 1927 Family Guembelitriidae Montanaro Gallitelli 1957

Genus GuembelitriaCushman 1933CUSHMAN JA. 1933. The foraminifera of the Tropical Pacific collections of the «Albatross», 1899-1900. Part 2, Lagenidae to Alveolinellidae. Washington, U.S. Govt. Print.

Guembelitria cretacea Cushman 1933CUSHMAN JA. 1933. The foraminifera of the Tropical Pacific collections of the «Albatross», 1899-1900. Part 2, Lagenidae to Alveolinellidae. Washington, U.S. Govt. Print.

Figure 4, a-b

Figure 4
Scanning electron micrographs of planktonic foraminifers from the Paleocene, Maria Farinha Formation, Paraíba Basin. a-b. Guembelitria cretacea Cushman 1983, a, lateral view; b, apertural view. c-e. Parvularugoglobigerina? sp., c, spiral view; d, lateral view; e, umbilical view. f-g. Woodringina hornerstownensis Olsson 1960OLSSON RK. 1960. Foraminifera of latest Cretaceous and earliest Tertiary age in the New Jersey Coastal Plain. J Paleontology 34: 1-58., f, lateral view; g, apertural view. h-i. Heterohelix cf. globulosa (Ehrenberg 1840EHRENBERG CG. 1840. Characteristik von 274 neuen Arten von Infusorien. Akad Wiss Berlin 1840: 197-219.), h, lateral view; i, apertural view. j-k. Zeauvigerina waiparaensis (Jenkins 1965JENKINS G. 1965. Planktonic foraminiferal zones and new taxa from the Danian to lower Miocene of New Zealand. New Zeal J Geol Geop 8: 1088-1126.), j, lateral view; k, apertural view. l-n. Muricohedbergella monmouthensis (Olsson 1960), l, umbilical view; m, lateral apertural view; n. spiral view. o-q. Praemurica cf. pseudoinconstans (Blow 1979BLOW WH. 1979. The Cainozoic Globigerinida, 3rd ed., Leiden: J Brill, 141 p.), o, spiral view; p, apertural view; q, umbilical view. Scale bars: a, b, c, k=10 μm; d, e, j, l, m, o, q=20 μm; F, g, i, n, p=50 μm; h=30 μm.

1940 Guembelitria cretaceaCushman 1933CUSHMAN JA. 1933. The foraminifera of the Tropical Pacific collections of the «Albatross», 1899-1900. Part 2, Lagenidae to Alveolinellidae. Washington, U.S. Govt. Print. , vol. 9, Pl. 2, 132, p. 37-38, Pl. 4, Figs. 12a-b apud Ellis and Messina.

1999 Guembelitria cretacea Cushman. Olsson et al., p. 79, 80, Pl. 13, Fig. 3.

2004 Guembelitria cretacea Cushman. Premoli Silva and Verga, p. 154, Pl. 57, Figs. 1-6.

2014 Guembelitria cretacea Cushman. Koutsoukos, p. 115, Figs. 6.1-6.6.

Material: 19 specimens.

Illustrated material: DGEO-CTG-UFPE-1425.

Occurrence: Olinda well, 38.25 m, 39.15 m.

Stratigraphical distribution (in the studied well): Lower Paleocene.

Remarks: In the studied specimens, although mostly fragmented, it was possible to observe the trisserial arrangement of the chambers, a feature that defines the genus. Wall structure microperforate and surface texture often characterized by blunt pore mounds. The specimens show notable intermediate morphological variation, related to the height/diameter ratio of tests. Specimens with a short-spire are common at the depth 39.15 m. According to Olsson et al. (1999OLSSON RK, HEMLEBEN C, BERGGREN WA AND HUBER BT. 1999. Atlas of Paleocene planktonic foraminifera. Sm C Paleob 85: 1-252.), Guembelitria besbesiSalaj 1986SALAJ J. 1986. The New Postrugoglobigerina praedaubjergensis Zone at the Base of the Stratotype of the Marine Paleocene (El Kef, Tunisia). Geologicky Zbornik, Geologica Carpathica 37: 35-58. is short-spired, being typical from lowest Paleocene. However, the present authors considered this feature as a morphological variation of G. cretacea. These variable forms occur in shallow platforms of Upper Maastrichtian and Lower Paleocene.

Guembelitria spp. (Not figured)

Material: 22 specimens.

Stratigraphical distribution (in the studied well): Lower Paleocene.

Occurrence: Olinda well, 38.25 m, 39.15 m.

Remarks: A group of specimens showed morphological features that allowed include it in a Guembelitria genus. Due to the bad preservation and/or absence of diagnostic morphological features, it was not possible to determine the species.

Genus Parvularugoglobigerina Hofker 1978

Parvularugoglobigerina? spp.

Figure 4, c-e

Material: Seven specimens.

Illustrated material: DGEO-CTG-UFPE-1426.

Stratigraphical distribution (in the studied well): Lower Paleocene.

Occurrence: Olinda well, 36.45 m, 39.15 m.

Remarks: Due to the bad preservation and absence of diagnostic morphological features it was not possible to identify the specimens at specific level.

Genus Woodringina Loeblich and Tappan 1957

Woodringina hornerstownensis Olsson 1960OLSSON RK. 1960. Foraminifera of latest Cretaceous and earliest Tertiary age in the New Jersey Coastal Plain. J Paleontology 34: 1-58.

Figure 4, f-g

1960 Woodringina hornerstownensis Olsson, p. 29, Pl. 4, Figs. 18, 19.

1999 Woodringina hornerstownensis Olsson. Olsson et al., p. 87, 88, Fig. 34, Pl. 13, Figs. 4, 5; Pl. 68, Figs. 8-14.

2014 Woodringina hornerstownensis Olsson. Koutsoukos, p. 116, Figs. 6:16-6:24.

Material: One specimen.

Illustrated material: DGEO-CTG-UFPE-1427.

Stratigraphical distribution (in the studied well): Lower Paleocene.

Occurrence: Olinda well, 36.45 m.

Remarks: The examined specimens are small and elongated, showing the biserial portion of the test distinctly twisted, although in lesser degree than Woodringina claytonensis Loeblich and Tappan 1957. According to Olsson et al. (1999OLSSON RK, HEMLEBEN C, BERGGREN WA AND HUBER BT. 1999. Atlas of Paleocene planktonic foraminifera. Sm C Paleob 85: 1-252.), W. hornerstownensis differs from W. claytonensis by the elongate tapering test and the almost straight sutures.

Woodringina? spp. (Not figured)

Material: Five specimens.

Stratigraphical distribution (in the studied well): Lower Paleocene.

Occurrence: Olinda well, 36.45 m, 39.15 m.

Remarks: The specimens examined are broken in the initial portion of the test, hampering the identification at specific level, though in the studied material there are possibly more than one species.

Subfamily Heterohelicinae Cushman 1927

Genus Heterohelix Ehrenberg 1843

Heterohelix cf. globulosa (Ehrenberg 1840EHRENBERG CG. 1840. Characteristik von 274 neuen Arten von Infusorien. Akad Wiss Berlin 1840: 197-219.)

Figure 4, h-i

Material: One specimen.

Illustrated material: DGEO-CTG-UFPE-1428.

Stratigraphical distribution (in the studied well): Lower Paleocene.

Occurrence: Olinda well, 38.25 m, 40.05 m, 42.75 m, 44.55- 45.45 m, 47.25- 49.95 m.

Remarks: Heterohelix globulosa usually shows globular chambers that grow gradually, being covered by thin costae. According to Nederbragt (1991NEDERBRAGT AJ. 1991. Late Cretaceous biostratigraphy and development of Heterohelicidae (planktic foraminifera). Micropaleontology 37: 329-372.), H. globulosa shows variations in the size, robustness of ornamentation and depth of its chambers, and the overlap of the subsequent chambers. In the examined material, this morphological variation is clear, but due to the preservation the identification was not possible. The abundant presence of species belonging to the genus Heterohelix in the Paleocene has been reported by several authors (Arenillas et al. 2000ARENILLAS I, ARZ JA, MOLINA E AND DUPUIS C. 2000. The Cretaceous/Paleogene (K/P) Boundary at Ain Settara, Tunisia: Sudden Catastrophic Mass Extinction in Planktic Foraminifera. J Foramin Res 30(3): 202-218., Peryt et al. 1993PERYT D, LAHODYNSKY R, ROCCHIA R AND BOCLET D. 1993. The Cretaceous-Paleogene boundary and planktonic foraminifera in the Flyschgosau (Eastern Alps, Austria). Palaeogeogr Palaeocl 104: 239-252., Keller 2004KELLER G. 2004. Low-diversity, Late Maastrichtian and Early Danian Planktic Foraminiferal assemblages of the eastern Tethys. J Foramin Res 34(1): 49-73., Barrera and Keller 1990, Liu and Olsson 1992). According to them H. globulosa dominated the populations of planktonic foraminifera of the upper Maastrichtian and occurs, although rare, until the P1a Zone, in lower Danian (Parasubbotina pseudobulloides Zone).

Genus ZeauvigerinaFinlay 1939FINLAY HJ. 1939. New Zealand Foraminifera: key species in stratigraphy. Trans R Soc N Z 69(2): 309-329.

Zeauvigerina waiparaensis (Jenkins 1965JENKINS G. 1965. Planktonic foraminiferal zones and new taxa from the Danian to lower Miocene of New Zealand. New Zeal J Geol Geop 8: 1088-1126.)

Figure 4, j-k

1965 Chiloguembelina waiparaensis Jenkins, p. 1095, Pl. 1, Figs. 1-6.

1994 Zeauvigerina waiparaensis (Jenkins) Huber and Boersma, p. 278, Pl. 1, Figs. 4a-c, Pl. 2, Figs. 10a-b (form prolate).

1999 Zeauvigerina waiparaensis (Jenkins). Olsson et al., p. 97, 98, Pl. 71, Figs. 6-8 (prolate shape).

Material: One specimen.

Illustrated material: DGEO-CTG-UFPE-1429.

Stratigraphical distribution (in the studied well): Lower Paleocene.

Occurrence: Olinda well, 39.15 m.

Remarks: Only one specimen was recovered from the analyzed material. The species is characterized by a small test with weakly inflated chambers increasing slowly and irregularly in size. It shows four or even seven pairs of chambers in the biserial phase, generally followed by one or two chambers above the previous pair becoming almost uniserial. According to Olsson et al. (1999OLSSON RK, HEMLEBEN C, BERGGREN WA AND HUBER BT. 1999. Atlas of Paleocene planktonic foraminifera. Sm C Paleob 85: 1-252.), the studies about Zeauvigerina showed disagreement about the generic classification, since it presents similarities with benthic and planktonic forms. Finlay (1939FINLAY HJ. 1939. New Zealand Foraminifera: key species in stratigraphy. Trans R Soc N Z 69(2): 309-329.) found similarities between Zeauvigerina teauria Finlay 1939 and the Guembelina (=Chiloguembelina) genus, indicating that it is a planktonic genus.

Superfamily Rotaliporacea Sigal 1958 Family Herbergellidae Loeblich and Tappan 1961 Subfamily Hedbergellinae Loeblich and Tappan 1961

Genus Muricohedbergella Huber and Leckie 2011

Muricohedbergella monmouthensis (Olsson 1960OLSSON RK. 1960. Foraminifera of latest Cretaceous and earliest Tertiary age in the New Jersey Coastal Plain. J Paleontology 34: 1-58.)

Figure 4, l-n

1960 Globorotalia monmouthensis Olsson, p. 47, pl. 9, Figs. 22-24.

1999 Hedbergella monmouthensis (Olsson). Olsson et al. p. 35-37, Fig. 15, Pl. 31, Figs. 1-15.

2004 Muricohedbergella monmouthensis (Olsson). Premoli-Silva and Verga, p. 167, Pl. 97, Figs. 1-4; p. 260, Pl. 30, Figs. 9-10.

Material: Three specimens.

Illustrated material: DGEO-CTG-UFPE-1430.

Stratigraphical distribution (in the studied well): Lower Paleocene.

Occurrence: Olinda well, 37.35-39.15 m, 43.65 m.

Remarks: Muricohedbergella monmouthensis is characterized by test very low trochospiral, nearly planispiral in appearance. Wall calcareous, finely perforate, covered with short, minute spines. Chambers inflated, globular with five, occasionally six, chambers of the final whorl increase rather rapidly in size. Aperture a low arch with a distinct lip. It differs from Mu. holmdelensis (Olsson 1964OLSSON RK. 1964. Late Cretaceous Planktonic Foraminifera from New Jersey and Delaware. Micropaleontology 10: 157-188.) because it presents more globular to subglobular chambers, while Mu. holmdelensis has ovate and compressed chambers. According to Olsson et al. (1999), only two species of Hedbergella (realocated in Muricohedbergella by Huber and Leckie 2011) cross the K-Pg boundary, Mu. monmouthensis and Mu. holmdelensis, both surviving up to the P0 zone.

Family Truncorotaloididae Loeblich and Tappan 1961

Genus Praemurica Olsson Hemleben, Berggren and Liu 1992

Praemurica cf. pseudoinconstans (Blow 1979BLOW WH. 1979. The Cainozoic Globigerinida, 3rd ed., Leiden: J Brill, 141 p.)

Figure 4, o-q

Material: Two specimens.

Illustrated material: DGEO-CTG-UFPE-1431.

Stratigraphical distribution (in the studied well): Lower Paleocene.

Occurrence: Olinda well, 36.45 m.

Remarks: The studied specimens are scarce, small (<125 µm) and resemble P. pseudoinconstans. According to Olsson et al. (1999OLSSON RK, HEMLEBEN C, BERGGREN WA AND HUBER BT. 1999. Atlas of Paleocene planktonic foraminifera. Sm C Paleob 85: 1-252.), the first chambers of this species increase gradually in size, while the terminal ones increase abruptly; the last chamber slightly offsets towards the umbilicus in some specimens. Aperture is a high rounded arch, bordered by a narrow lip broadening towards umbilicus. It differs from Praemurica taurica by the moderately inflated chambers, which increase more abruptly in size in the last whorl. However, the smooth texture raises doubts about its identification.

RESULTS AND DISCUSSION

A total of 11 species of ostracods and nine planktonic foraminifera were identified in the Paleocene deposits of the Olinda well, Paraíba Basin. From the 16 analyzed samples, only 12 contained ostracod specimens and six, foraminifera. The stratigraphic distribution of the species is illustrated in Figure 5.

Figure 5
Stratigraphic distribution of ostracods and planktonic foraminifera in the Olinda well, Paraíba Basin.

Most of the ostracod material was identified only at genus level, due to the poor preservation and scarcity of specimens. Despite the low abundance and preservational constraints, the following genera were identified: Cytherella (3 spp.), Cytherelloidea (1 sp.), Eocytheropteron (1 sp.), Semicytherura (1 sp.), Pataviella? (1 sp.), Paracosta (1 sp.), Buntonia (1 sp.), Soudanella (1 sp.) and Leguminocythereis (1 sp.).

The Poty quarry bears more diverse and abundant ostracod assemblages compared with the Olinda well (Fauth et al. 2005FAUTH G, COLIN JP, KOUTSOUKOS EA AND BENGTSON P. 2005. Cretaceous/Tertiary boundary ostracodes from the Poty Quarry, Pernambuco, northeastern Brazil. J S Am Earth Sci 19(3): 285-305.). The species shared are Cytherella piacabucuensis, Soudanella laciniosa and Paracosta recifeiensis. The genera Cytherelloidea, Eocytheropteron, Semicytherura, Buntonia, Leguminocythereis and, probably, Pataviella are recorded for the first time in the Paraíba Basin. With the exception of the presumed occurrence of Pataviella, all the remaining genera had already been recorded in the Upper Cretaceous of the Potiguar and Sergipe basins (Neufville 1973NEUFVILLE EMH. 1973. Upper Cretaceous-Palaeogene Ostracoda from the South Atlantic. Publications from the Palaeontological Institution of the University of Uppsala, Special Volume 1: 1-205., Delicio et al. 2000DELICIO MP, COIMBRA JC AND CARREÑO AL. 2000. Cretaceous marine Ostracoda from the Potiguar basin, Northeastern Brazil. N Jb Geol Paläont Abh 215(3): 321-345., Viviers et al. 2000VIVIERS MC, KOUTSOUKOS EAM, SILVA-TELLES AC AND BENGTSON P. 2000. Stratigraphy and biogeographic affinities of the late Aptian-Campanian ostracods of the Potiguar and Sergipe basins in northeastern Brazil. Cretaceous Res 21: 407-455., Piovesan et al. 2014PIOVESAN EK, CABRAL MC, COLIN JP, FAUTH G AND BERGUE CT. 2014. Ostracodes from the Upper Cretaceous deposits of the Potiguar Basin, northeastern Brazil: taxonomy, paleoecology and paleobiogeography. Part 2: Santonian-Campanian. Carnets Geol 14(15): 315-351.). If confirmed, the record of Pataviella, also present in Paleocene of Senegal, would reinforce the similarities between the ostracofauna of the Brazilian northeast basins and the east African ones, as summarized by Fauth (2002).

The Paleocene planktonic foraminifera were identified as Guembelitria cretacea, Guembelitria spp., Parvularugoglobigerina? spp., Woodringina hornerstownensis, Woodringina? spp., Heterohelix cf. globulosa, Zeauvigerina waiparaensis, Muricohedbergella monmouthensis and Praemurica cf. pseudoinconstans. With the exception of Zeauvigerina waiparaensis and Praemurica cf. pseudoinconstans, the other foraminifer taxa had already been reported for the Paraíba Basin (e.g., Koutsoukos 1996KOUTSOUKOS EAM. 1996. Phenotypic experiments into new pelagic niches in early Danian planktonic foraminifera: aftermath of the K/T boundary event. In: Hart MB (Ed), Biotic Recovery from Mass Extinctions Events. London: Geological Society Special Publication 102: 319-335., 2006, Gertsch et al. 2013GERTSCH B, KELLER G, ADATTE T AND BERNER Z. 2013. The Cretaceous-Tertiary boundary (KTB) transition in NE Brazil. J Geol Soc 170: 249-262.). Zeauvigerina waiparaensis occurs from the Maastrichtian (Abathomphalus mayaroensis Zone) to the late Paleocene, presenting abundance levels at the base of the Danian. Similar to the species of Guembelitria, Z. waiparaensis survived the K-Pg extinction (e.g., Huber and Boersma 1994, Pardo and Keller 2008). Another important species in this interval is Praemurica pseudoinconstans, characteristic of the Pα zone (upper part) and of the P1a subzone (basal part of the P1 zone) as already observed by Berggren and Pearson (2005) and Koutsoukos (2014).

In the lower part of the Olinda well (39.15-38.25 m) the ostracod assemblages are very poorly preserved and composed of Soudanella laciniosa and Cytherella sp. 2 along with a more diversified assemblage of the foraminifera, constituted by Zeauvigerina waiparaensis, Guembelitria cretacea, Heterohelix cf. globulosa and some unidentified species of Guembelitria, Muricohedbergella, Parvularugoglobigerina and Woodringina. The association is marked by the abundance of Guembelitria cretacea, Guembelitria spp. and the occurrence of Woodringina spp. This interval probably corresponds to the lower part of the Pα Zone, in accordance with bioevents recorded by Koutsoukos (2014KOUTSOUKOS EAM. 2014. Phenotypic plasticity, speciation, and phylogeny in Early Danian planktic foraminifera. J Foramin Res 44: 109-142.) in the Campos Basin. The first occurrence of Soudanella laciniosa is also suggestive of the base of the Paleocene (Fauth et al. 2005FAUTH G, COLIN JP, KOUTSOUKOS EA AND BENGTSON P. 2005. Cretaceous/Tertiary boundary ostracodes from the Poty Quarry, Pernambuco, northeastern Brazil. J S Am Earth Sci 19(3): 285-305.). The blooms of Guembelitria (20-30%) are related either to shallow water environments or upwelling events. In the Danian, where the P0-P1a zones are recorded, Guembelitria (10-20%) and Z. waiparaensis are dominant in the low diversifity associations (Pardo and Keller 2008). These blooms of Guembelitria are commonly associated with a high influx of nutrients or continental runoff, upwelling along continental margins, or volcanic entry (Pardo and Keller 2008). In the Paraíba Basin blooms of Guembelitria have been identified by Stinnesbeck and Keller (1995), Keller and Stinnesbeck (1996), Koutsoukos (1996) and Pardo and Keller (2008).

The presence of the ostracod Soudanella laciniosa, a dominantly neritic species in the Poty quarry (Rodrigues et al. 2014RODRIGUES GB, FAUTH G, SANTOS RV, KOUTSOUKOS EAM AND COLIN JP. 2014. Tracking paleoecological and isotopic changes through the K-Pgboundary from marine ostracodes: The Poty quarry section, northeastern Brazil. Cretaceous Res 47: 105-116.), reinforces the interpretation of a neritic environment at the base of the well. The isotopic data show a substantial decrease of SiO2 and Al2O3, a pattern associated with reduction of the siliciclastic input. The δ18O negative values in this interval suggest hotter seawater (Nascimento et al. 2011NASCIMENTO MVS, SIAL AN, FERREIRA VP, NEUMANN VH, BARBOSA JA, PIMENTEL MM AND LACERDA LD. 2011. Cretaceous-Paleogene transition at the Paraíba Basin, Northeastern, Brazil: Carbon-isotope and mercury subsurface stratigraphies. J S Am Earth Sci 32: 379-392. ).

The superposed interval (38.25-37.35 m) is marked by the decline in the abundance of planktonic foraminifera, with only Muricohedbergella monmouthensis present. According to Olsson et al. (1999OLSSON RK, HEMLEBEN C, BERGGREN WA AND HUBER BT. 1999. Atlas of Paleocene planktonic foraminifera. Sm C Paleob 85: 1-252.), Paleocene species of Hedbergella, realocated in Muricohedbergella by Huber and Leckie (2011), are limited to the P0 zone. Thus, the specimen of Muricohedbergella monmouthensis recorded in this section could be reworked. This hypothesis is reinforced by its coincident occurrence with Woodringina? spp. that, according to Olsson et al. (1999), are restricted to the younger Pα zone. A notable change in the assemblage composition, with a decrease in diversity and abundance of Paleogene taxa and increase of reworked taxa is observed. A conspicuous change in the assemblage composition is seen in the interval 37.35-35.25 m. From this level onwards, the ostracod diversity increases, in contrast to the planktonic foraminiferal diversity. The planktonic association in this range consists of Praemurica cf. pseudoinconstans, Woodringina hornerstownensis, Parvularugoglobigerina? spp., Woodringina? spp., and other unidentified specimens. In addition, the benthic foraminiferal association, represented mainly by Gavelinella and Cibicidoides (36.45 m and 35.55 m), also indicates a neritic environment. In the Poty quarry, Paraíba Basin, Koutsoukos (2006KOUTSOUKOS EAM. 2006. The Cretaceous-Paleogene boundary at the Poty section, NE Brazil: foraminiferal record and sequence of events - a review. Anuário do Instituto de Geociências 29: 95-107.) reports the presence of Gavelinella coonensis and Cibicidoides alleni as indicative of a deep neritic environment. Another aspect of the ostracod fauna indicative of neritic environments is the presence of cytherurids (Semicytherura sp. and Eocytheropteron sp.). The Cytheruridae is a diverse and abundant family of marine/brackish water cytheracean Ostracoda (Ramos et al. 1999RAMOS MIF, COIMBRA JC, WHATLEY RC AND MOGUILEVSKY A. 1999. Taxonomy and ecology of the Family Cytheruridae (Ostracoda) in Recent sediments from thenorthern Rio de Janeiro coast, Brazil. J Micropalaeontol 18: 1-16. ), and in the Mesozoic they seem to have been confined to shelfal depths, with many species also in marginal marine habitats (Ballent and Whatley 2009), a behavior that may have been extended to the Paleocene. Shallower waters in this interval could be inferred not only by the dominance of the benthic ostracods and reduction in plancktonic foraminifera, but also by the increase of SiO2 and Al2O3 (Nascimento et al. 2011NASCIMENTO MVS, SIAL AN, FERREIRA VP, NEUMANN VH, BARBOSA JA, PIMENTEL MM AND LACERDA LD. 2011. Cretaceous-Paleogene transition at the Paraíba Basin, Northeastern, Brazil: Carbon-isotope and mercury subsurface stratigraphies. J S Am Earth Sci 32: 379-392. ).

Above 34.65 m begins 5.10 m thick interval composed predominantly of limestone where occurs only rare benthic foraminifera, fragmented planktonic specimens and the ostracod Cytherelloidea sp. occur. This noteworthy reduction in abundance and richness of both ostracods and foraminifera results possibly from preservational conditions related to the lowstand system tract, as proposed by Nascimento et al. (2011NASCIMENTO MVS, SIAL AN, FERREIRA VP, NEUMANN VH, BARBOSA JA, PIMENTEL MM AND LACERDA LD. 2011. Cretaceous-Paleogene transition at the Paraíba Basin, Northeastern, Brazil: Carbon-isotope and mercury subsurface stratigraphies. J S Am Earth Sci 32: 379-392. ), based in the high SiO2 and Al2O3 content of the sediments.

CONCLUSIONS

Ostracods and foraminifera from the Olinda well seem to indicate environmental changes in the lower Paleocene of the Paraíba Basin. Nine planktonic foraminifer and eleven ostracod taxa were identified.

The lower Paleocene of Olinda Well can be subdivided in different faunal associations, probably related to changes in environmental conditions. The base of the well is characterized by blooms of Guembelitria spp., which constitutes important marker for shallow environments and upwelling zones in association with the ostracod Soudanella laciniosa, typical of neritic environments. The superimposed interval, in the median part of the studied well, presents associations indicative of shallower water based on the dominance of benthic foraminifera and cytherurid ostracods, associate with the reduction in the abundance of planktonic foraminifera. Finally, on the top of the section, the foraminifera and ostracods are rare and badly preserved, which could be related to the inception of the lowstand system tract.

The ostracod and foraminifera analyzed, therefore, permit the interpretation of neritic paleoenvironment in the studied section, corroborating previous palaeoenvironmental interpretations for the Paleocene of the Paraíba Basin based on other fossil groups and isotopic data.

ACKNOWLEDGMENTS

The authors would like to thank Prof. José Antônio Barbosa for the samples used in this study, Rogério Martins (PETROBRAS) and Laboratório de Dispositivos e Nanoestruturas (LDN-UFPE) for the SEM pictures. We also thank the staff of the Laboratório de Micropaleontologia of Universidade do Vale do Rio dos Sinos (UNISINOS), specially Guilherme Krahl, for support and discussion on foraminifera.

REFERENCES

  • ALBERTÃO GA, KOUTSOUKOS EAM, REGALI MPS, ATTREP M AND MARTINS PP. 1994. The Cretaceous-Tertiary boundary in southern low-latitude regions: preliminary study in Pernambuco, northeastern Brazil. Terra Nova 6: 366-375.
  • ALBERTÃO GA AND MARTINS JR PP. 1996. A possible tsunami deposit at the Cretaceous-Tertiary boundary in Pernambuco, northeastern Brazil. Sed Geol 104: 189-201.
  • ALVAREZ LW, ALVAREZ W, ASARO F AND MICHEL HV. 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208(4448): 1095-1108.
  • APOSTOLESCU V. 1961. Contribution à l’étude paléontologique (Ostracodes) et stratigraphique des bassins crétacés et tertiaires de l’Afrique occidentale. Rev I Fr Petrol 16(7/8): 779-867.
  • APOSTOLESCU V. 1963. Essai de zonation par les Ostracodes dans le Crétacédu bassin duSénégal. Rev I Fr Petrol 18(2): 1675-1694.
  • ARENILLAS I, ARZ JA, MOLINA E AND DUPUIS C. 2000. The Cretaceous/Paleogene (K/P) Boundary at Ain Settara, Tunisia: Sudden Catastrophic Mass Extinction in Planktic Foraminifera. J Foramin Res 30(3): 202-218.
  • ASHROF AR AND STINNESBECK W. 1989. Pollen und sporen and der Kreide-Tertiagreenze in State Pernambuco NE Bresilien. Palaeontogr Abt B 208(1-3): 133-149.
  • BALLENT S AND WHATLEY RC. 2009. Taxonomy and zoogeography of the Mesozoic cytherurid ostracoda from West-Central Argentina. Palaeontology 52(1): 193-218.
  • BARBOSA JA, SOUZA EM, LIMA FILHO MF AND NEUMANN VH. 2003. A estratigrafia da Bacia Paraíba: uma reconsideração. Estudos Geológicos 13: 89-108.
  • BARBOSA JA, VIANA MSS AND NEUMANN VH. 2006. Paleoambientes e icnofácies da sequência carbonática (Cretáceo e Paleogeno) da Bacia Paraíba, NE do Brasil. Rev Bras Geo 36(3): 73-90.
  • BARRERA E AND KELLER G. 1990. Stable isotope evidence for gradual enviromental changes and species survivorship across the Cretaceous/Tertiary boundary. Paleoceanography 5: 867-890.
  • BASSIOUNI MAA AND LUGER P. 1990. Maastrichtian to early EoceneOstracoda from southern Egypt: palaeontology, palaeoecology, palaeobiogeography and biostratigraphy. Berliner geowiss Abh A 120: 755-928.
  • BERGGREN WA AND PEARSON PN. 2005. A revised tropical to subtropical planktonic foraminiferal zonation. J Foramin Res 35: 27-298.
  • BERGUE CT AND COIMBRA JC. 2002. New recent ostracode species from Brazilian equatorial shelf. N Jb Geol Paläont Mh 11: 659-670.
  • BERTELS A. 1973. Ostracodes of the type localiy of the Lower Tertiary (lower Danian) Rocanian Stage and Roca Formation (Argentina). Micropaleontology 19(3): 308-340.
  • BIRCH HS, COXALL HK, PEARSON PN, KROON D AND SCHMIDT DN. 2016. Partial collapse of the marine carbon pump after the Cretaceous-Paleogene boundary. Geology 44(4): 287-290.
  • BLOW WH. 1979. The Cainozoic Globigerinida, 3rd ed., Leiden: J Brill, 141 p.
  • BOLD WA VAN DEN . 1960. Eocene and Oligocene Ostracoda of Trinidad. Micropaleontology 6(2): 133-144.
  • BOLLI HM. 1957. The genera Globigerina and Globorotalia the Paleocene-Lower Eocene Lizard Springs Formation of Trinidad, B.W.I. Bull. U.S. Natl Mus 215: 61-81.
  • CAINELLI C AND MOHRIAK WU. 1999. Some remarks on the evolution of sedimentary basins along the eastern Brazilian Continental margin. Episodes 22(3): 206-216.
  • CARBONNEL G, ALZOUMA K AND DIKOUMA M. 1990. Les ostracodes paléocènes du Niger: taxinomie - un témoignage de l’existence eventuelle de la mer transsaharienne? Geobios-Lyon 23: 671-697.
  • CARBONNEL G AND JOHNSON A. 1989. Les ostracodes paléogènes du Togo : taxonomie, biostratigrafie, apports dans l’organization et l’evolution du bassin. Geobios-Lyon 22(4): 409-443.
  • CARBONNEL G AND OYEDE M. 1991. Les ostracodes du site d’Onigbolo (Paléocene, Benin). Leur place dans le bassin Togo-Nigeria. Ann Paleont 77(2): 65-102.
  • CEOLIN D, FAUTH G AND COIMBRA JC. 2011. Cretaceous-Lower Paleogene ostracods from the Pelotas Basin, Brazil. Palaeobio Palaeoenv 91: 111-128.
  • COLIN JP, TAMBAREAU Y AND KRASHENENNIKOV VA. 1998. Maastrichtian and Paleocene ostracode assemblages of Mali (western Africa). Slovenska Akademija Znanosti in Umetnosti 34(2): 273-345.
  • CÓRDOBA VC, SA EFJ, SOUZA DC AND ANTUNES AF. 2007. Bacia de Pernambuco-Paraíba. B Geoci Petrobras 15(2): 391-404.
  • CORREIA FILHO OJ, ALENCAR ML, BARBOSA JA AND NEUMANN VH. 2015. Proposta de formalização da Formação Tambaba, Eoceno da Bacia Paraíba, NE do Brasil. Estudos Geológicos 25(2): 61-81.
  • COURTILLOT V, BESSE J, VANDAMME D, MONTIGNY R, JAEGER J AND CAPPETTA H. 1986. Deccan flood basalts at the Cretaceous/Tertiary boundary. Earth Planet Sci Lett 80: 361-374.
  • CUSHMAN JA. 1933. The foraminifera of the Tropical Pacific collections of the «Albatross», 1899-1900. Part 2, Lagenidae to Alveolinellidae. Washington, U.S. Govt. Print.
  • DAMOTTE R. 1982. Ostracodes maestrichtiens et paléocènes du Togo. Cah Micropaleontol 2: 47-63.
  • DELICIO MP, COIMBRA JC AND CARREÑO AL. 2000. Cretaceous marine Ostracoda from the Potiguar basin, Northeastern Brazil. N Jb Geol Paläont Abh 215(3): 321-345.
  • DIOP A, GUERNET C AND POIGNANT A. 1982. Microfaune du Paléogène de quelques sondages du dôme du Sénégal occidental; observations sur les Ostracodes. Geobios-Lyon 15(1): 19-31.
  • EHRENBERG CG. 1840. Characteristik von 274 neuen Arten von Infusorien. Akad Wiss Berlin 1840: 197-219.
  • ELLIS BF AND MESSINA AR. 1940. Catalogue of Foraminifera. New York, American Museum of Natural History, Special Publication.
  • FAUTH G. 2002. Paleogeography of the Upper Cretaceous to Lower Tertiary marine ostracods from the Atlantic Ocean. Rev Bras Paleontol 4: 67-71.
  • FAUTH G, COLIN JP, KOUTSOUKOS EA AND BENGTSON P. 2005. Cretaceous/Tertiary boundary ostracodes from the Poty Quarry, Pernambuco, northeastern Brazil. J S Am Earth Sci 19(3): 285-305.
  • FINLAY HJ. 1939. New Zealand Foraminifera: key species in stratigraphy. Trans R Soc N Z 69(2): 309-329.
  • FOSTER CA, SWAIN FM AND PETTERS SW. 1983. Late Paleocene Ostracoda from Nigeria. Rev E Micropaleontol 15(1): 103-166.
  • GERTSCH B, KELLER G, ADATTE T AND BERNER Z. 2013. The Cretaceous-Tertiary boundary (KTB) transition in NE Brazil. J Geol Soc 170: 249-262.
  • GRADSTEIN FM, OGG JG, SCHMITZ MD AND OGG GM. 2012. The Geologic Time Scale 2012. Elsevier 1 and 2, 1-435 and 437-1144.
  • HAQ BU. 2014. Cretaceous Eustasy Revisited. Global and Planetary Change 113: 44-58.
  • HORNE DJ. 2005. Ostracoda. In: Selley RC et al. (Eds), Encyclopedia of Geology, Oxford: Elsevier, p. 453-463.
  • HUBER BT. 2006. Portal CHRONOS. Mesozoic Planktonic Foraminiferal Taxonomic Dictionary.Mesozoic Planktonic Foraminiferal Working Group, available at <www.chronos.org>.
    » www.chronos.org
  • HUBER BT AND BOERSMA A. 1994. Cretaceous origination of Zeauvigerina and its relationship to Paleocene biserial planktonic foraminifera. J Foramin Res 24(4): 268-287.
  • HUBER BT AND LECKIE RM. 2011. Planktic foraminiferal species turnover across deep-sea Aptian/Albian boundary sections. J Foramin Res 41(1): 53-95.
  • JENKINS G. 1965. Planktonic foraminiferal zones and new taxa from the Danian to lower Miocene of New Zealand. New Zeal J Geol Geop 8: 1088-1126.
  • KELLER G. 2004. Low-diversity, Late Maastrichtian and Early Danian Planktic Foraminiferal assemblages of the eastern Tethys. J Foramin Res 34(1): 49-73.
  • KELLER G. 2014. Deccan volcanism, the Chicxulub impact and the end-Cretaceous mass extinction: Coincidence? Cause and Effect? In: Keller G and Kerr A (Eds), Volcanism, Impacts and Mass Extinctions: Causes and Effects. Geological Society of America Special Papers, 505, p. 57-89.
  • KELLER G AND STINNESBECK W. 1996. Near-K/T age of clastic deposits from Texas to Brazil: impact, volcanism and/or sea-level lowstand? Terra Nova 8: 277-285.
  • KELLER G, STINNESBECK W, ADATTE T AND STUEBEN D. 2003. Multiple impacts across the Cretaceous-Tertiary boundary. Earth-Sci Rev 62: 327-363.
  • KOUTSOUKOS EAM. 1996. Phenotypic experiments into new pelagic niches in early Danian planktonic foraminifera: aftermath of the K/T boundary event. In: Hart MB (Ed), Biotic Recovery from Mass Extinctions Events. London: Geological Society Special Publication 102: 319-335.
  • KOUTSOUKOS EAM. 2006. The Cretaceous-Paleogene boundary at the Poty section, NE Brazil: foraminiferal record and sequence of events - a review. Anuário do Instituto de Geociências 29: 95-107.
  • KOUTSOUKOS EAM. 2014. Phenotypic plasticity, speciation, and phylogeny in Early Danian planktic foraminifera. J Foramin Res 44: 109-142.
  • LIEBAU A. 1991. Skulptur-Evolution bei Ostrakoden am Beispiel europäischer “Quadracytheren”. Geol Paläont Westf 13: 1-395.
  • LIMA FILHO MF, MONTEIRO AB AND SOUZA EM. 1998. Carbonate sections of the Paraíba and Pernambuco Basins, Northeastern Brazil: Implications for the latest ages of opening of Southern Atlantic Ocean. International Congress of Sedimentologists, 15, 1998, Abstracts…, p. 504-505.
  • LIU C AND OLSSON RK. 1992. Evolutionary radiation of microperforate planktonic foraminifera following the K/T mass extinction event. J Foramin Res 22: 328-346.
  • LOEBLICH AR AND TAPPAN H. 1957. Planktonic foraminifera of Paleocene and early Eocene age from the Gulf and Atlantic coastal plains. United States National Museum Bulletin 215: 173-198.
  • LOEBLICH JR AR AND TAPPAN H. 1988. Foraminiferal Genera and Their Classification. New York: van Nostrand Reinhold Company, 970 p.
  • MABESOONE JM AND ALHEIROS MM. 1988. Origem da bacia sedimentar costeira Pernambuco-Paraíba. Rev Bras Geo c 18(4): 476-482.
  • MABESOONE JM AND ALHEIROS MM. 1993. Evolution of the Pernambuco-Paraíba-Rio Grande do Norte Basin and the problem of the South Atlantic connection. Geol Mijnbouw 71: 351-362.
  • MABESOONE JM, DAMASCENO JM, OLIVEIRA LDD AND OLIVEIRA MIM. 1991. Paleontologia estratigráfica. In: Mabesoone JM (Ed), Revisão Geológica da Faixa Sedimentar Costeira de Pernambuco, Paraíba e Rio Grande do Norte, Recife: Universidade Federal de Pernambuco, Estudos e Pesquisas, Série B 10: 105-109.
  • MABESOONE JM, TINOCO IM AND COUTINHO PM. 1968. The Mesozoic-Tertiary boundary in northeastern Brazil. Palaeogeogr Palaeocl 4: 161-185.
  • MALZ H. 1981. Paläozäne Ostracoden von den Emperor Seamounts, NW-Pazific. Zitteliana 7: 3-29.
  • MCKENZIE KG. 1967. Recent Ostracoda from Port Phillip Bay, Victoria. Proc Roy Soc Victoria 80(1): 61-106.
  • MOHRIAK WU, NEMCOK M AND ENCISO G. 2008. South Atlantic divergent margin evolution: rift-border uplift and salt tectonics in the basins of SE Brazil. In: Pankhurst RJ et al. (Eds), West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region, London: Geological Society Special Publication 294: 365-398.
  • NASCIMENTO MVS, SIAL AN, FERREIRA VP, NEUMANN VH, BARBOSA JA, PIMENTEL MM AND LACERDA LD. 2011. Cretaceous-Paleogene transition at the Paraíba Basin, Northeastern, Brazil: Carbon-isotope and mercury subsurface stratigraphies. J S Am Earth Sci 32: 379-392.
  • NEDERBRAGT AJ. 1991. Late Cretaceous biostratigraphy and development of Heterohelicidae (planktic foraminifera). Micropaleontology 37: 329-372.
  • NEUFVILLE EMH. 1973. Upper Cretaceous-Palaeogene Ostracoda from the South Atlantic. Publications from the Palaeontological Institution of the University of Uppsala, Special Volume 1: 1-205.
  • NEUFVILLE EMH. 1979. Upper Cretaceous-Paleogene marine ostracods from the Sergipe-Alagoas Basin, northeastern Brazil. Bulletin of the Geological Institutions of the University of Uppsala, New Series 8: 135-172.
  • OKOSUN EA. 1987. Ostracod biostratigraphy of the eastern Dahomey Basin, Niger Delta and the Benue Trough of Nigeria. Bulletin of the Geological Survey of Nigeria 41: 1-151.
  • OLSSON RK. 1960. Foraminifera of latest Cretaceous and earliest Tertiary age in the New Jersey Coastal Plain. J Paleontology 34: 1-58.
  • OLSSON RK. 1964. Late Cretaceous Planktonic Foraminifera from New Jersey and Delaware. Micropaleontology 10: 157-188.
  • OLSSON RK, HEMLEBEN C, BERGGREN WA AND HUBER BT. 1999. Atlas of Paleocene planktonic foraminifera. Sm C Paleob 85: 1-252.
  • PARDO A AND KELLER G. 2008. Biotic effects of environmental catastrophes at the end of the Cretaceous and early Tertiary: Guembelitria and Heterohelix blooms. Cretaceous Res 29: 1058-1073.
  • PERYT D, LAHODYNSKY R, ROCCHIA R AND BOCLET D. 1993. The Cretaceous-Paleogene boundary and planktonic foraminifera in the Flyschgosau (Eastern Alps, Austria). Palaeogeogr Palaeocl 104: 239-252.
  • PIOVESAN EK, CABRAL MC, COLIN JP, FAUTH G AND BERGUE CT. 2014. Ostracodes from the Upper Cretaceous deposits of the Potiguar Basin, northeastern Brazil: taxonomy, paleoecology and paleobiogeography. Part 2: Santonian-Campanian. Carnets Geol 14(15): 315-351.
  • PREMOLI SILVA I AND SLITER VW. 1995. Cretaceous planktic foraminiferal biostratigraphy and evolutionary trends from the Bottaccione section, Gubbio, Italy. Palaeontogr Ital 82: 1-89.
  • PREMOLI SILVA I AND VERGA D. 2004. Practical Manual of Cretaceous Planktonic Foraminifera. In: Verga D and Rettori R (Eds), International School on Planktonic Foraminifer, 3rd Course, Perugia: Tipografia Pontefelcino, 284 p.
  • RAMOS MIF, COIMBRA JC, WHATLEY RC AND MOGUILEVSKY A. 1999. Taxonomy and ecology of the Family Cytheruridae (Ostracoda) in Recent sediments from thenorthern Rio de Janeiro coast, Brazil. J Micropalaeontol 18: 1-16.
  • REYMENT RA. 1963. Studies on Nigerian upper Cretaceous and lowerTertiary Ostracoda, part 2: Danian, Paleocene, and Eocene Ostracoda. Stockholm Contr Geol 10: 1-287.
  • REYMENT RA AND ARANKI JF. 1991. On the Tertiary genus Soudanella Apostolescu (1961), (Ostracoda, Crustacea). J Micropalaeontol 10(1): 23-28.
  • RODRIGUES GB, FAUTH G, SANTOS RV, KOUTSOUKOS EAM AND COLIN JP. 2014. Tracking paleoecological and isotopic changes through the K-Pgboundary from marine ostracodes: The Poty quarry section, northeastern Brazil. Cretaceous Res 47: 105-116.
  • SALAJ J. 1986. The New Postrugoglobigerina praedaubjergensis Zone at the Base of the Stratotype of the Marine Paleocene (El Kef, Tunisia). Geologicky Zbornik, Geologica Carpathica 37: 35-58.
  • SARR R. 1999. Le Paléogène de la région de Mbour-Joal (Sénégal occidental): biostratigraphie, étude systématique des ostracodes, paléoenvironnement. Revue Paleobiol 18(1): 1-29.
  • SEN GUPTA BK. 1999. Modern Foraminifera. Kluwer Academic Publishers, 361 p.
  • STINNESBECK W AND KELLER G. 1995. The Cretaceous-Tertiary boundary in southern low-latitude regions: preliminary study in Pernambuco, northeastern Brazil-comments and reply. Terra Nova 7: 335-382.
  • STINNESBECK W AND REYMENT R. 1988. Note on a further occurrence of Soudanella laciniosa Apostolescu (1961) in northeastern Brazil. J Afr Earth Sci 7(516): 779-781.
  • TINOCO IM. 1967. Micropaleontologia da Faixa Sedimentar Costeira Recife-João Pessoa. Bol Soc Bras Geol 16(1): 81-85.
  • TINOCO IM. 1976. Foraminíferos planctônicos e a passagem entre o Cretáceo e o Terciário em Pernambuco, NE do Brasil. In: Congresso Brasileiro de Geologia, 29, Anais..., p. 17-35.
  • TINOCO IM. 1977. Foraminíferos bentônicos da Formação Maria Farinha (Paleoceno de Pernambuco). In: Simpósio de Geologia do Nordeste, 8, Campina Grande. Atas..., p. 65-99.
  • TINOCO IM. 1978. Foraminíferos bentônicos da Formação Gramame (Cretáceo Superior, Maastrichtiano) de Pernambuco. In: Congresso Brasileiro de Geologia, 30, Anais... , 2, p. 1032-1046.
  • TINOCO IM AND SIQUEIRA LP. 1976. Aplicação da micropaleontologia na prospecção de fosfato sedimentar. An Acad Bras Cienc 48: 47-55.
  • VIVIERS MC, KOUTSOUKOS EAM, SILVA-TELLES AC AND BENGTSON P. 2000. Stratigraphy and biogeographic affinities of the late Aptian-Campanian ostracods of the Potiguar and Sergipe basins in northeastern Brazil. Cretaceous Res 21: 407-455.

Publication Dates

  • Publication in this collection
    07 Aug 2017
  • Date of issue
    Jul-Sep 2017

History

  • Received
    07 Nov 2016
  • Accepted
    16 Mar 2017
Academia Brasileira de Ciências Rua Anfilófio de Carvalho, 29, 3º andar, 20030-060 Rio de Janeiro RJ Brasil, Tel: +55 21 3907-8100 - Rio de Janeiro - RJ - Brazil
E-mail: aabc@abc.org.br